ON PAVLOV’S CONJECTURE ON PRESENTABLY SYMMETRIC
MONOIDAL oco-CATEGORIES

KENSUKE ARAKAWA

ABsTrRACT. We prove that the co-category of presentably symmetric monoidal
oo-categories is equivalent to that of combinatorial symmetric monoidal model
categories and left Quillen monoidal functors. This proves the conjecture by
Pavlov.

Size issues arise inevitably in category theory, and careless handling of them
can lead to pathological situations. For example, the theory of small categories
with small limits is not categorically interesting, as they are merely preordered
sets. However, a careful bookkeeping of size has a substantial payoff: It gives
rise to the theory of locally presentable categories. These categories contain most
large categories of interest, while enjoying good categorical properties (bicomplete,
adjoint functor theorems hold, stable under exponential, etc.).

Presentable co-categories are an oo-categorical generalization of locally presentable
categories. As in the 1-categorical setting, they include most large co-categories of
interest (spaces, spectra, derived oco-categories, sheaves, etc.). At the same time,
they retain excellent formal properties. For these reasons, they are now understood
as a natural setting in which most homotopy-invariant constructions take place.

Historically, however, the presentable co-categories did not arise directly as a re-
sponse to size issues in homotopy theory. Instead, they were predated by combina-
torial model categories, which are model categories satisfying some size conditions.
The advantage of combinatorial model categories is that that many homotopy-
theoretic constructions can be performed within an ordinary category, where many
arguments and constructions are significantly more tractable than in co-categories.
Because of this, they also remain a popular setting for homotopy-theoretic argu-
ments.

This parallel development raises the question of how presentable oco-categories
and combinatorial model categories are related. In this direction, Dugger and Lurie
showed that an co-category is presentable if and only if it underlies a combinato-
rial model category [DugOla, Lur09]. More recently, Pavlov [Pav25| upgraded this
result by showing that the homotopy theory of combinatorial model categories is
equivalent to that of presentable co-categories. Informally, this establishes combi-
natorial model categories provide as concrete models for presentable co-categories.

In many cases, both oco-categories and model categories come with symmetric
monoidal structures. This naturally leads to the notions of presentably symmetric
monoidal co-categories and combinatorial symmetric monoidal model categories.
Pavlov conjectured that the homotopy theories of these two are likewise equivalent
[Pav25, Conjecture 1.9]. Establishing such an equivalence is important not only for
conceptual completeness, but also because symmetric monoidal structures play a
central role in modern homotopy theory, including operad theory, enrichment, and
multiplicative constructions.

The main result of this paper confirms Pavlov’s conjecture. More precisely, the
main result of this paper proves the following:
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Theorem A (Theorem 2.4). The functor
L: CombSMMC[Quillen.eq '] — Pr8M

is an equivalence, where:

e CombSMMC denotes the category of combinatorial symmetric monoidal
model categories and left Quillen symmetric monoidal functors;

e Quillen.eq denotes the class of Quillen equivalences;

e Pr8M denotes the co-category of presentably symmetric monoidal co-categories;
and

e L carries combinatorial symmetric monoidal model categories to their un-
derlying symmetric monoidal co-category.

Remark 0.1. In an earlier work, Nikolaus—Sagave showed that L is essentially sur-
jective [NS17].

Remark 0.2. Theorem 2.4 admits many variations. Precise statements will appear
in Section 6. In particular, we will prove the following:

e Every tractable (non-symmetric) monoidal semi-model category is monoidally
Quillen equivalent to a simplicial one. This gives a partial solution to an
open problem by Hovey [Hov, Problem 10] (Remark 6.5).

e Every presentably symmetric monoidal co-category € admits an essentially
unique presentation by a combinatorial symmetric monoidal model category
(Remark 6.3)

Beyond its intrinsic theoretical importance, Theorem A provides an effective way
to work with presentably symmetric monoidal oco-categories. Theorem A allows
us to reduce general statements about them to corresponding statements about
combinatorial symmetric monoidal model categories, where concrete constructions
are often more manageable. In forthcoming work [Arab|, we apply this strategy to
establish a new equivalence of two models of enriched co-operads.

Our method. Our approach to Theorem A is similar in spirit to that of Pavlov, but
extending his argument to the symmetric monoidal setting presents new difficulties.
His approach is built upon two inputs. The first is the work of Barwick—Kan
[BK12b], which says that co-categories can be modeled by relative co-categories.
The second is the work of Dugger and Low on presenting combinatorial model
categories [DugOla, Low16]. To prove Theorem A, we must extend both of these
works to the symmetric monoidal setting. We will replace the first by the author’s
earlier work on symmetric monoidal relative categories [Araa], and the second by
the new model category of symmetric cubical sets (Subsection 5.1).

Organization of the paper. This paper has 6 sections in the main body and 3
sections in the appendix.

e In Section 1, we recall the definition of monoidal model categories and their
variations.

e In Section 2, we state the main theorem, and then show that it follows from
three separate propositions. The proof of these propositions will be given
in the next three sections (Section 3, 4, and 5). The appendix contains
some miscellaneous results that will be used in the paper.

e In Section 6, we give variations of the main result of this paper. We

Notation and convention.

e In addition to the ZFC axioms, we will assume the existence of three nested
Grothendieck universes whose elements are called small sets, large sets, and
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very large sets.! All locally presentable categories are assumed to be large
but not very large, so that the collection of locally presentable categories
themselves form a very large set.

o We assume that model categories are at most large.

e We use the term “regular cardinal” to mean “small regular cardinal.”

e By oo-categories, we mean quasicategories in the sense of [Joy02, Lur09].
We mostly follow the terminology and notation of [Lur09].

e We let Fin, denote the category of finite pointed sets (n) = ({,1,...,n},*)
for n > 0 and pointed maps.

o We let SMCaty, denote the oo-category of small symmetric monoidal co-
categories (defined as the localization of the model category described in

[Lurl?7, Variant 2.1.4.13]). We write SMé;too for the oo-category of large
symmetric monoidal oo-categories.

o We write PréM C SMCat,, for the subcategory spanned by the presentably
symmetric monoidal co-categories and symmetric monoidal functors that
preserve small colimits. We define the oo-category PrMon of presentably
monoidal co-categories similarly.

e We will not notationally distinguish between ordinary categories and their
nerves. We will also regard every (2, 1)-category as an oco-category by tak-
ing its Duskin nerve. (Recall that this converts (2, 1)-categories into oo-
categories, and it is functorial in strictly unitary pseudofunctors [Lur25,
Tag 00AU].)

e If M is a model category, we write M o,s C M for the full subcategory of
cofibrant objects. We also write M, for the underlying oco-category of M
(i-e., localization at weak equivalences).

e Given a pair of symmetric co-monoidal categories €, D, we let Fun®(C, D)
denote the oco-category of symmetric monoidal functors ¢ — D. We use
similar notation for symmetric monoidal categories.?

1. MONOIDAL MODEL CATEGORIES AND THEIR VARIATIONS

The use of the term “monoidal model category” and its variations is not entirely
standardized in the literature. The goal of this section is to record the the precise
definitions we will use.

1.1. Plain case. We start with the definition of monoidal model categories. There
are several competing definitions in the literature: Most definitions in the literature
require the pushout-product axiom, but they often differ in their requirement on
how “flat” the unit object should be. In some literature (e.g., [Lurl?]), the unit
object is required to be cofibrant. This assumption is convenient for theoretical
purposes but ends up excluding many interesting examples, such as [Examples|. At
the other extreme (e.g., [PS18]), no condition on the unit object is assumed. In this
paper, we go for a middle ground by adopting an axiom satisfied by most monoidal
model categories we encounter in practice.

Definition 1.1. Let A, B, C be model categories. A functor F': A x B — C is
called a left Quillen bifunctor if it satisfies the following pair of conditions:

1Although Pavlov did not make this assumption in his paper [Pav25], it seems extremely
inconvenient to drop this assumption due to the nature of the statements we will prove. For
example, the statement of the main theorem itself needs to be adjusted without this.

2When € and D are symmetric monoidal categories regarded as symmetric monoidal oco-
categories, then Fun® (€, D) has potentially two meanings. This is not confusing because the two
categories are naturally equivalent, although we interpret Fun® (G, D) as the category of ordinary
symmetric monoidal functors unless stated otherwise.
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(1) The functor F' preserves small colimits in each variable.
(2) For every pair of cofibrations f: A — A’ in A and g: B — B’ in B, the
map
F(A,B) Ura,B) F(A',B) — F(A, B)
is a cofibration, and moreover it is a weak equivalence if f or g is one.

Definition 1.2.

¢ A monoidal model category is a biclosed monoidal category (M, ®,1)
equipped with a model structure, satisfying the following axioms:

(1) (Pushout-product axiom) The functor ®: M x M — M is a left
Quillen bifunctor (Definition 1.1).

(2) (Muro’s unit axiom [Murl5]) There is a weak equivalence g: 1 — 1,
with 1 cofibrant, such that for every object X € M, the maps X ® ¢
and ¢ ® X are weak equivalences.

e We say that a monoidal model category is combinatorial if its underlying
model category is combinatorial. If further it admits generating sets of
cofibrations and trivial cofibrations whose elements have cofibrant domain,
it is called tractable.

e If M and N are monoidal model categories, then a monoidal left Quillen
functor is a monoidal functor® M — N whose underlying functor of model
categories is left Quillen. We will write Fun®’LQ(M, N) for the category of
monoidal left Quillen functors M — N and monoidal natural transforma-
tions between them.

e We will write CombMMC for the (very large) category of combinatorial
monoidal model categories and monoidal left Quillen functors, and write
CombMMC* ¢ CombMM(C for the full subcategory spanned by the combi-
natorial monoidal model categories with a cofibrant unit.

e Symmetric monoidal model categories and symmetric monoidal
left Quillen functors are defined similarly. (We will use the notation
Fun®’LQ(f, —) in the symmetric monoidal case, too. This is abusive but
is rarely confusing.) The categories CombSMMC and CombSMMC? are
also defined similarly, using combinatorial symmetric monoidal model cat-
egories.

e We define categories TractMMC, TractSMMC?, etc, similarly, using tractable
symmetric or non-symmetric monoidal model categories.

The reason why we adopt Muro’s unit axiom is that it allows us to turn every
monoidal model category into one with a cofibrant unit. More precisely, we have
the following theorem.

Theorem 1.3. [Murl5, Theorem 1, Proposition 12] The inclusion CombMMC! ¢
CombMMC admits a left adjoint. Moreover, the unit of this adjunction preserves
and reflects weak equivalences and induces an isomorphism of underlying monoidal
categories. A similar claim holds for combinatorial symmetric monoidal model
categories.

The categories CombMMC can be upgraded to a (2, 1)-category CombMMC, 1),
whose mapping groupoid are given by the maximal subgroupoid Fun®’LQ(M, N)% -
Fun®’LQ(M, N). We will use similar notations for the categories introduced in Def-
inition 1.2. These co-categories satisfy the following universal property:

3By a monoidal functor, we mean a strong monoidal functor in the sense of [ML98, Chapter
XIj.
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Proposition 1.4. The functors
CombMMC — CombMMC3 1),

CombMMC" — CombMMC}, ),
CombSMMC — CombSMMC; 1),

CombSMMC* — CombSMMCf;

are co-categorical localizations at the left Quillen functors whose underlying functors
are equivalences of categories.

Proof. We will prove the assertion for the first functor; the remaining assertions
can be proved in a similar way. According to (the dual of) [ACK25, Corollary
3.16], it suffices to show that CombMMC, ;) admits weak cotensor by [1]. That
is, it suffices to show that for each N € CombMMC; 1), there is an object [1] M N
admitting an isomorphism of groupoids
Fun® 2@ (M, [1] th N)™ = Fun([l], Fun® @ (M, N)%)

natural in M € CombMMC. For this, we consider the groupoid J with two objects
0,1, and with exactly one morphism between any pair of objects. We can make N
into a monoidal model category by using the degreewise tensor product and the
model structure coming from the equivalence of categories N = N“. Then N7 is
a weak cotensor of N by [1], and we are done. O

1.2. Enriched case. We next turn to the definition of enriched monoidal model
categories.

Definition 1.5. Let V be a combinatorial symmetric monoidal model category.

e A V-monoidal model category is a tensored and cotensored V-monoidal
category M (in the sense of [Day70]) which is biclosed (i.e., for each X € M,
the V-functors X ® — and — ® X admit right adjoints), equipped with a
model structure on its underlying category, such that the tensor bifunctor

VxM-—M

is a left Quillen bifunctor.

e We say that a V-monoidal model category is combinatorial if its under-
lying model category is combinatorial.

e If M and N are V-monoidal model categories, we write Fun%’LQ (M,N)
for the category of V-monoidal functors M — N that are V-cocontinuous
and whose underlying functors are left Quillen.

e We write CombMMCy; (31) for the (2,1)-category whose objects are the
combinatorial V-monoidal model categories, with hom-groupoids given by
the maximal subgroupoids of Fung’LQ(f, =).

e We write CombMMCy; for the underlying category of CombMMCy; (2, 1).

We define V-symmetric monoidal model categories similarly, and define a (2,1)-
category CombSMMCy; (2 1) and an ordinary category CombSMMCy; similarly. As
in Definition 1.2, we also consider full subcategories of these categories such as
TractMMCy and TractSMMCy,.

In ordinary algebra, a commutative algebra A over a commutative ring k£ can
be defined as a commutative ring equipped with a ring homomorphism & — A.
Extending an analogy of this to the model-categorical setting, we arrive at the
notion of symmetric algebras:

Definition 1.6. Let V be a combinatorial symmetric monoidal model category.
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e A symmetric V-algebra is a monoidal model category M equipped with
a monoidal left Quillen functor V.— M.

e We say that a symmetric V-algebra is combinatorial if its underlying
model category is combinatorial.

o We write CombSymV-Alg, ;) = [ ™M@ by ®LQ(v M) for the
(2, 1)-category of combinatorial symmetric V-algebras, where f denotes the
2-Grothendieck construction [Str80, 1.10]. Explicitly:

— Objects are combinatorial symmetric V-algebras.

— A l-morphism (F: V- M) — (G: V— N) is a pair (H,«), where
H: M — N is a symmetric monoidal functor and a: HF = G is a
symmetric monoidal natural transformation.

— A 2-morphism (H,«) = (H',&/): (F: V—>M) - (G: V—>N) is

a symmetric monoidal natural isomorphism §: H = o satisfying
o o BF =
A% A%
F/ W \C = F/_ s \C
H/
M N M A T N
_
H

e We write CombSymV-Alg for the underlying category of CombSymV-Alg, ;).

Remark 1.7. There is a related notion of central algebras [Hov99, Definition 4.1.10],
but they are not amenable to the techniques we use in this paper.

As in Proposition 1.4, we have:

Proposition 1.8. Let V be a combinatorial symmetric monoidal model category.
The functors

CombMMCy — CombMMCy (2,1),

CombMMCy, — CombMMCy 5 1),
CombSMMCy — CombSMMCy (2,1),

CombSMMCy; — CombSMMCy (5 1),
CombSymV -Alg — CombSymV -Alg, ;)
are all localizations.

1.3. Semi-model-categorical case. (Left) Semi-model categories are a weak-
ening of Quillen model categories in which part of the axioms of lifting and fac-
torization are only required to hold for cofibrations with cofibrant source [BW24,
Definition 2.1]. While this leads to a less attractive set of axioms, semi-model cate-
gories are practically indistinguishable from model categories. The main advantages
of semi-model categories over ordinary model categories is that they are much eas-
ier to construct than a full model structure. In particular, tractable semi-model
categories are fully compatible with (left) Bousfield localizations [BW24, Theorem
A]. For these reasons, semi-model categories have become increasingly popular, and
we have no reason not to include them in this paper.

Definition 1.9. A semi-model category is said to be tractable if it is locally
presentable as a category and admits generating sets of cofibrations of cofibrant
objects and trivial cofibrations of cofibrant objects.
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Definition 1.10. A left Quillen functor M — N of tractable semi-model cat-
egories is a left adjoint that preserves cofibrations of cofibrant objects and trivial
cofibrations of cofibrant objects. (Equivalently, its right adjoint preserves fibrations
and trivial fibrations.)

A left Quillen bifunctor F': M x N — P of tractable semi-model categories
is a functor that preserves small colimits in each variable, and which satisfies the
pushout-product axiom for cofibrations and trivial cofibrations of cofibrant objects
and trivial cofibrations of cofibrant objects.

Definition 1.11. The definition of monoidal model categories carries over to the
semi-model categorical case. We define a category TractMMCgenm; of tractable
monoidal semi-model categories, and define categories such as TractM mct TractSMMCyeni,

semi’

and TractSl\/Il\/IC:emi similarly, as in Definition 1.2. Also, for a combinatorial sym-
metric monoidal semi-model category V, there is a notion of V-monoidal model cat-
egories and V-symmetric monoidal model categories. The categories TractM MC%/,semi

and TractSMMCy/ semi, etc, are defined exactly as in Definition 1.5.

Remark 1.12. Theorem 1.3 and Proposition 1.4 remains valid for semi-model cat-
egories, with the same proof.

2. MAIN RESULT

In this section, we state the main result of this paper and explain how we will
prove it.
To state our main result, we need a bit of terminology and notation.

Definition 2.1. [Araa, Definition 0.1] A symmetric monoidal relative cate-
gory is a symmetric monoidal category C equipped with a subcategory W C C of
weak equivalences, which contains all isomorphisms and is stable under tensor
products.

We write SMRelCat for the category of small symmetric monoidal relative cate-
gories and symmetric monoidal relative functors that preserve weak equivalences.
We define the category SM RelCat of large symmetric monoidal relative categories
similarly.

Example 2.2. Let M be a symmetric monoidal model category. Weak equivalences
of M are generally not stable under tensor products, so M is generally not a
symmetric monoidal relative category. Nonetheless, its full subcategory M? ¢ M
of cofibrant objects and the objects isomorphic to the unit objects is a symmetric
monoidal relative category.

For the next definition, we recall that localization of symmetric monoidal relative
categories determines a functor L: SMRelCat — SMCato, [Araa, Notation 2.1].

Definition 2.3. We define a functor
(=)o : CombSMMC — Pr8M

as the codomain restriction of the composite

— b —_— —~
CombSMMC =2 SMRelCat %5 SMCat...

(Note that this is well-defined by [Lurl7, Proposition 1.3.4.22 and Corollary 1.3.4.26].)
If M is a combinatorial symmetric monoidal model category, we refer to M, as its
underlying symmetric monoidal co-category.

We now arrive at the statement of the main result.
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Theorem 2.4. The functor (=), of Definition 2.8 is a localization at Quillen
equivalences, i.e., it induces a categorical equivalence

CombSMMC[Quill.eq™'] = Pr&M.

We will prove Theorem 2.4 as follows: Fix a left proper tractable symmetric
monoidal model category S with a cofibrant unit, whose underlying symmetric
monoidal co-category is equivalent to the cartesian monoidal co-category 8 of oo-
groupoids.? (Examples include the cartesian model category of simplicial sets with

the Kan—Quillen model structure.) We also define a category SM Relfa\tyrggv[ by the
pullback

SMRelCatpsn —— SMRelCat
| |
PrSM —— SMCate..

We then contemplate the following commutative diagram

CombSymS-Alg —Y  CombSMMC! —“— CombSMMC

(—)»J{ l(—)oo

SMRelCatprs PrSMCat..,

L

where U is the forgetful functor and ¢ is the inclusion. We will then prove that:

Proposition 2.5. The functor L: SMRe'a(prgM — fPrSMG/a\tOO induces a cate-
gorical equivalence

SMRelCatp, [loc.eq™'] — PréMCato,

where loc.eq denotes the subcategory of local equivalences, i.e., morphisms in-
verted by L.

Proposition 2.6. The functor (=), induces a categorical equivalence
CombSymS-Alg[Quill.eq '] = SMRelCatg,sac[loc.eq ).

Proposition 2.7. The functor U induces a categorical equivalence
CombSymS-Alg[Quill.eq '] = CombSMMC! [Quill.eq™].

The proof of these propositions will be given in the next three sections (Section
3,4, and 5). Since we know that ¢ induces a categorical equivalence upon localizing
at Quillen equivalences (Theorem 1.3), these proposition will prove Theorem 2.4.

3. PROOF OF PROPOSITION 2.5
We first prove Proposition 2.5, which asserts that the functor
SMRelCatpsa[loc.eq™!] = Pr&M

is an equivalence. In fact, we will prove the following more general assertion:

Lemma 3.1. For every conservative functor X — SMCaty of co-categories, the
functor

SMRelCaty = X Xgneat,, SMRelCat — X

18 a localization.

4Since § is the initial presentably symmetric monoidal co-category [Lurl7, Corollary 3.2.1.9,
Example 4.8.1.20], such an equivalence is unique up to a contractible space of choices if it exists.
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Replacing SMCaty, by SMéa\too and then substituting PrSM for X, we obtain
Proposition 2.5.
For the proof of Lemma 3.1, we need some terminology and notation.

e A relative oo-category is an oo-category equipped with a subcategory
W C € containing all equivalences. Morphisms in W are typically called
weak equivalences. When C is (the nerve of) an ordinary category, we
call such pairs relative categories. A relative functor is a functor This
should not be confused with the definition of Barwick—Kan [BK12b], which
they only require that W contains all objects.

e If C and D are relative oco-categories, a relative functor f: ¢ — D is a
functor between the underlying oo-categories that preserve weak equiva-
lences. We say that such an f is a homotopy equivalence if there is a
relative functor g: D — C and zig-zags of natural weak equivalences con-
necting f o g and g o f to the identity functors.

e We write RelCat for the category of small relative categories and func-
tors preserving weak equivalences. For disambiguation, we will write write
RelCatpk for the slightly larger category of Barwick—Kan'’s relative cate-
gories that are small.

e We call a morphsim f:C — D of RelCatgk a local equivalences if it
induces an equivalence between the (co-categorical) localizations.

e Recall that a symmetric monoidal category is called a permutative cat-
egory if its underlying monoidal category is strict (i.e., its associators and
the unitors are the identity maps). We write PermRelCat C SMRelCat for
the subcategory of objects whose underlying symmetric monoidal categories
are permutative categories, and morphisms whose underlying symmetric
monoidal functors are strict.

e We will regard the categories RelCat, RelCatpk, PermRelCat, SMRelCat as
relative categories whose weak equivalences are the local equivalences.

o We write Fin, for the category of finite pointed sets and pointed maps. We
write Fun®°8(Fin,, RelCat) € Fun®°8(Fin,, RelCat) for the full subcategory
spanned by the functors F': Fin, — RelCat satisfying the following Segal
condition: For every n > 0, the map p;: (n) — (1) defined by

() = x if i #£ g,
PRIV=A1 ifi=j,

induces a local equivalence

Fin)y = ] FQ.
1<i<n

We define Fun®°8(Fin,, RelCatpk) C Fun®*(Fin,, RelCatgy) similarly.
Proof of Lemma 3.1. Since symmetric categories are functorially equivalent to per-
mutative categories [May78, Proposition 4.2], using Proposition B.3, we may replace
SMRelCat by PermRelCat.

According to [Araa, Theorem 1.1], there is a homotopy equivalence Fact: PermRelCat —

Fun®°8 (Fin,, RelCat) of relative categories. The proof of loc. cit. further shows that
the localization of Funseg(Fin*, RelCat) is equivalent to 8MCat, and the diagram

PermRelCat 25 FunS°(Fin,,, RelCat)

\[ llocalization

SMRelCat — SMCat .
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commutes up to natural equivalence. Thus, by Proposition B.3, it will suffice to
show that the functor

Fun®°8(Fin,, RelCat),. — X

is a localization. Since the inclusion RelCat < RelCatpgk is a homotopy equivalence
of relative categories, we are free to replace RelCat by RelCatpxk.

We now recall from [BK12b, Theorem 6.1] and [BK12a, Theorem 1.8] that
RelCatgk and its local equivalences is part of a combinatorial model structure.
Therefore, Theorem B.1 and [Hir03, Theorem 11.6.1] show that the localization

Fun(Fin,, RelCatgk) — Fun(Fin,, RelCatpy )[weq ]
is stable under pullback. In particular, the functor
Fun®°8(Fin,, RelCatpk ) — X

is a localization, which was to be proved. [l

4. PROOF OF PROPOSITION 2.6

Notation 4.1. Throughout this section, we fix a left proper tractable symmetric
monoidal model category S with a cofibrant unit, whose underlying symmetric
monoidal co-category is equivalent to the cartesian monoidal co-category 8 of co-
groupoids.

In this section, we give a proof of Proposition 2.6, which asserts that the functor
CombSymS-Alg[Quill.eq '] =5 SMRelCatp,sc[loc.eq ]

is an equivalence. This will need two ingredients: A relative-categorical version of
the multiplicative Gabriel-Ulmer duality, and some formal cardinality argument of
model categories. We will tackle each of these in the next two subsections, and
then prove Proposition 2.6 at the end of this subsection.

4.1. Relative-categorical multiplicative Gabriel-Ulmer duality. In this sub-
section, we state and prove a relative-categorical multiplicative Gabriel-Ulmer dual-
ity (Proposition 4.6). We refer the reader to Section A for a review of Gabriel-Ulmer
duality.

To state the main result, we need a bit of preliminaries.

Notation 4.2. Let k be a regular cardinal. We write SMCat () for the subcate-
gory of 8MCat, spanned by the symmetric monoidal co-categories that compatible
with k-small colimits (i.e., those co-categories that have k-small colimits and whose
tensor product preserves those colimits in each variable).

We write SMCatidem (k) € §MCat, (k) for the full subcategory spanned by the
objects that are idempotent complete.

Construction 4.3. Let  be a regular cardinal. For each € € SMRelCatgyteatidem ()
we define an S-algebra Ind® (L(@)) as follows:
e Its underlying category is Fun(C°P,S).
e The symmetric monoidal structure comes from Day’s convolution product.
e The symmetric monoidal functor S — Fun(C°P, S) is given by X — €(—,1)-
X, where 1 € € denote the monoidal unit and the dot “-” denotes copow-
ering by set.
e The model structure is the left Bousfield localization of the projective model
structure on Fun(C°P, S) whose weak equivalences are the maps inverted by
the composite

Fun(C°,S) — Fun(C°?,8) — Fun(L(€)",8) — Ind,(L(C)).
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Here, the first functor is the postcomposes the localization S — 8, the sec-
ond functor is the left adjoint Kan extension along the localization functor
CP — L(C)°P, and the third functor is the left adjoint to the inclusion
Ind,(L(€)) — Fun(L(€), ).
We sometimes use the notation Ind® (L(€)) for essentially small symmetric monoidal
relative categories whose symmetric monoidal localization is idempotent complete
and is compatible with k-small colimits.

Lemma 4.4. Construction 4.3 is well-defined. More precisely, in the situation of
Construction 4.3, the following holds:
(1) The model category Ind$ (L(C)) exists.
(2) The model category IndS(L(C)) satisfies the pushout-product aziom, and
the monoidal unit is cofibrant.
(8) The symmetric monoidal functor S — Ind(L(Q)) is left Quillen.

Proof. Part (1) is a consequence of Proposition B.4.

Next, we prove (2). Choose generating sets I, J of cofibrations and trivial cofibra-
tions of S. According to [Hir03, Theorem 11.6.1], the sets Ie = {C(—,C)i}ier, cec
and Je = {C(—,C) - j}jes, ceec generate cofibrations and trivial cofibrations of the
projective model structure on Fun(€°P, S). It follows immediately that:

e The monoidal unit of Fun(C°P, S) is cofibrant (because S has a cofibrant
unit).

e The Day convolution product satisfies the pushout-product axiom for the
projective model structure.

e The projective model structure is tractable.

Therefore, to prove (2), it will suffice to prove the following: For every cofibrant
object X € Ind$(L(€)), the functor
X ® —: Ind3(L(Q)),, — Ind3(L(@))
preserves weak equivalences. But this is clear, because the composite
Fun(C°?,S),_ ; — Fun(C°?,8) — Fun(L(€)",8) — Ind,(L(C))
is symmetric monoidal.

Claim (3) follows from the fact that its right adjoint is the evaluation at the unit
object, which is evidently right Quillen. The claim follows. (]

cof cof

cof

Notation 4.5. For each subcategory X C 8MCat,, containing all equivalences,
we will write SMRelCatx = X xgateat,, SMRelCat, and define SMRelCat(3 1) x C
SMRelCat (s 1y for the sub (2, 1)-category whose mapping groupoids are the compo-
nents corresponding to the morphisms in SMRelCatx.

We can now state the main result of this subsection.
Proposition 4.6. The strictly unitary pseudofunctor
SMRelCatgyceatitem () — SMReICat, prsne(2,1)
€~ Ind3(L(C)),
imduces a categorical equivalence
SMRelCatgyteatidem (r) [loc.eq_l] = SI\/IReIEa\t,i_ga,SM’(M)[1oc.eq_1].

We need a lemma for the proof of Proposition 4.6. We will use the following
notation: For each subcategory X C SMCat,, containing all equivalences, we will
write SMRelCat (5 1) x C SMRelCat(y ;) for the sub (2,1)-category whose mapping
groupoids are the components corresponding to the morphisms in SMRelCaty. We
then have:
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Lemma 4.7. For every subcategory X C SMCaty, containing all equivalences, the
inclusion SMRelCatx — SMRelCat(; 1) x is a localization.

Proof. According to [ACK25, Corollary 3.15], it suffices to show that the (2,1)-
category SMRelCat(; 1)y admits a weak cotensor by [1]. Given an object € €
SMRelCat (s 1y, a weak cotensor by [1] is given by @7, where the tensor product
is given by the degreewise tensor product, and the weak equivalences the natural
transformations whose components are weak equivalences. ([

We can now prove Proposition 4.6.

Proof of Proposition 4.6. The Yoneda embedding determines a pseudonatural trans-
formation depicted as

Ind3 (L(-))»

SMRelCatgyceatitem () SMRelCat,..prsr.(2.1)

\ /
SMRelCat s 1)
Using Lemmas 3.1 and 4.7 to identify the localization of each category at local

equivalences, we obtain a functor I: §M€at'd®™ (k) — k-Pr8M and a natural trans-
formation depicted as

SMCatidem () ! K-PréM
\:M /
SMCat oo ().

By counstruction, the pair (I, «) satisfies the hypothesis of Corollary A.9. It follows
from this corollary that I is an equivalence, and we are done. [l

4.2. Strongly x-combinatorial model categories. Combinatorial model cate-

gories enjoy the following curious property, first articulated by Dugger in [Dug01a]

and later expanded by Low [Lowl6]: Beyond sufficiently large regular cardinals,

the distinction between ordinary-categorical notion and oo-categorical notions gets

blurry. In this subsection, we record several results that embody this principle.
The following definition is essentially due to Low [Low16, Definition 5.1]:

Definition 4.8. Let s be a regular cardinal. We say that a model category M is
strongly x-combinatorial if there is a regular cardinal kg < k with the following
properties:

(1) M is locally ko-presentable.

(2) M, is closed under finite limits in M.

(3) Each hom-set in M, is x-small.

(4) There are k-small sets of morphisms in M,;, that cofibrantly generate the

model structure on M.

The following results summarize the basic properties of strongly x-combinatorial
model categories.

Proposition 4.9. [Low16, Propositions 5.6, 5.12|For every combinatorial model
category M, there is a reqular cardinal x such that M is strongly k-combinatorial.
Moreover, in this situation, M, is a model category whose cofibrations, fibrations,
and weak equivalences are precisely those of M of k-compact objects.

Proposition 4.10. [Lowl6, Remark 5.2|Let k' > K be reqular cardinals. FEvery
strongly k-combinatorial model category is strongly k’-combinatorial.
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Proposition 4.11. Let k be a reqular cardinal, and let M be a strongly k-combinatorial
model category. Then the co-category My o = (M), admits k-small colimits, and
the functor

oo

t: My oo = Mo

exhibits Moo as an Ind,-completion of M,; .

Proof. The fact that M, o, admits s-small colimits follows from the argument
of [Cis19a, Proposition 7.7.4]. To show that ¢ induces a categorical equivalence

Ind, (M, o0) =5 Mo, it suffices to prove the following:

(1) The functor ¢ is fully faithful.

(2) The essential image of ¢ generates M, under x-filtered colimits.

(3) The image of ¢ lies in (Mao),.

Claim (1) follows from Proposition 4.9 and [ACK25, Corrollary 3.1], which asserts
that the classical derived mapping spaces (computed using simplicial resolutions
objects) computes the mapping spaces of the localization of model categories.

For (2), we observe that weak equivalences of M are stable under x-filtered
colimits [RR15, Proposition 4.1]. This implies that x-filtered colimits in M are
already homotopy colimits, so we only have to show that M, generates M under
k-filtered colimits. This is clear, because M is locally k-presentable.

For (3), suppose we are given a k-filtered co-category J and a colimit diagram
F: 79 — My. We must show that, for every object X € M,, the diagram
Mo (X,—) o F: 7> — 8 is a colimit diagram. Using [Lur25, Tag 02QA], we may
assume that J is (the nerve of) a poset. In this case, the functor Fun(J*, M) —
Fun(J”, M) is a localization [Cis19a, Theorem 7.9.8], so we may assume that F'
lifts to a diagram G:J> — M. Without loss of generality, we may assume that G
takes values in the full subcategory of fibrant objects. Set G = G/|J. Since J is
k-filtered, the map

colimg G — G(c0)
is a weak equivalence. Moreover, since fibrations of M are stable under rs-filtered
colimits, the object colimg G € M is fibrant. Thus, we may assume that G is a
strict colimit diagram.

Now choose a cosimplicial resolution X*® of X in M,. By [ACK25, Corrol-
lary 3.1], the functor M(X*®, —): Mg, — sSet descends to the functor My, — 8
corepresented by X. Therefore, we are reduced to showing that the diagram
M(X ',6):3D — sSet is a homotopy colimit diagram. This is clear, since each
X*® is k-compact and k-filtered colimits are homotopy colimits in sSet. The proof
is now complete. ([

Corollary 4.12. Let k be a reqular cardinal, and let M be a symmetric S-algebra
whose underlying model category is strongly k-combinatorial. The inclusion My, cor —
M induces a left Quillen equivalence of S-algebras

0: Ind®(L(M, cof)) = M
MeMy cot
X / M @ X (M).

Proof. We first show that 6 induces a left Quillen functor

0 Fun(MOp s) M,

K,cof?

where Fun (MOP

e cof S) carries the projective model structure. Since M is strongly
k-combinatorial, it has a generating set I of cofibrations consisting of maps in

M,. The maps {M(—, M) ® i}nrem, .. ier generate projective cofibrations of
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Fun (MOp

o cofs S) [Hir03, Theorem 11.6.1]. The images of these maps under 6 are
simply the maps {M ® i}rem, .., icr, Which are all cofibrations. Hence 6 carries
projective cofibrations to cofibrations. A similar argument shows that 6 carries
projective trivial cofibrations to trivial cofibrations. Hence 6’ is left Quillen, as
claimed.

We now consider the following diagram, which commutes up to natural equiva-
lence:

MK,COf ” Mn,oo

| |

o 0%
Fun(M;", ¢, 8)oo —— Mxo

|

Ind® (L(M, cof) ) oo-

According to Proposition 4.11, the functor ¢ exhibits M, as an Ind,-completion of

M, . Also, by what we have just shown in the previous paragraph, the functor

0’ preserves small colimits. It follows that 6/ can be identified with the functor
Fun (MOp

K,cof?

s) = Ind,, (My cof)

described in Construction 4.3. By the definition of weak equivalences of Ind? (L(M,, cof)),
this means that 6 preserves weak equivalences of cofibrant objects of Ind® (L(Mj cof)).
Since we already know that €' is a left Quillen functor, and since Ind® (L(Mj cof))
is tractable, this is enough to conclude that 0 is a left Quillen functor. The resulting
functor

000 Ind (L(My cof)) . — Moo
is an equivalence, because both sides are the Ind,-completion of M,; .. Hence 6 is
a left Quillen equivalence, and we are done. (I

We conclude this subsection by taking monoidal structures into account.

Definition 4.13. Let x be a regular cardinal. A monoidally x-combinatorial
model category is a monoidal model category M satisfying the following condi-
tions:

e As a model category, M is strongly k-combinatorial.
e r-compact objects are stable under finite tensor products. (In particular,
the unit object is k-compact.)

We write CombMMC(x) C CombMMC for the subcategory spanned by the monoidally
k-combinatorial model category and those maps that preserve x-compact objects.

Lemma 4.14.

(1) For every pair of reqular cardinals K<\, we have CombMMC(x) C CombMMC(\).
(2) Every morphism of CombMMC belongs to CombMMC(k) for some regular
cardinal K.

Proof. We first show that every combinatorial monoidal model category M is
monoidally k-combinatorial for some x, and if this is true, then M is monoidally
A-combinatorial for every A > k. By Proposition 4.9, there is some regular car-
dinal kg such that M is strongly kg-combinatorial as a model category. Find a
regular cardinal ko < x such that, if XY € M,,, then X ® Y € M,. Since
every k-compact object is a k-small colimit of kg-compact object [MP89, Theo-
rem 2.3.11], this ensures that k-compact objects is stable under tensor product.
Hence M is monoidally k-combinatorial. A similar argument, using Proposition
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4.10, shows that every monoidally k-combinatorial model category is monoidally
A-combinatorial.

We now prove (1) and (2). Part (1) follows from the result in the previous
paragraph and [AR94, Remark 2.20]. For (2), let F: M — N be a morphism of
CombMMC. By the result in the previous paragraph and part (1), we can find some
ko such that M and N are monoidally xkg-combinatorial. Choose k> kg such that
F(M,,) C N,. We claim that F belongs to CombMMC(k).

Since every k-compact object is a k-small colimit of xg-compact object [MP89,
Theorem 2.3.11], our choice of k and ko ensure that F(M,) C N,. We also know
from (1) that M and N are monoidally k-combinatorial from. Thus F belongs to
CombMMC(k), as desired. O

4.3. Proof of Proposition 2.6. We now arrive at the proof of Proposition 2.6.

Notation 4.15. We write urCard for the (large) poset of (small) uncountable

L —

regular cardinals, ordered by <. Given a functor F:urCard — Cat, we write

Ik urCard 12 urCard for the Grothendieck construction of F. Likewise, given a func-

tor G:urCard® — fa\t, its Grothendieck construction will be denoted by fu G —

urCard.

rCard

Notation 4.16. We let CombSymS-Alg®® c CombSymS-Alg denote the full sub-
category of S-algebras M whose underlying category is skeletal (i.e., isomorphic
objects are equal). Note that for such an M, the full subcategory M, of k-compact
objects is literally small for every k.

We define a full subcategory Com bSymS—AIg?;l) C CombSymS-Alg, ; similarly.

Proof of Proposition 2.6. By Proposition 1.8 and Lemma 4.7, it suffices to show
that the functor

CombSymS-Algs | [Quill.eq ] — SMRelCat(z,1)[loc.eq ']

is an equivalence.
For each uncountable regular cardinal &, let CombSymS—AIg(f<;)Sk denote the fiber
product

CombSymS-AIgSk X CombMMC CombI\/II\/IC(F;).

We now consider the following diagram:

furcard CombSymS-Alg(—)k —£, SMRelCatgyeat.. (—)

—)poln S
Ul /Inds J{( )soInd

CombSymS-Algfs — SMRelCatprsc,(2.1)-

urCard

Here U and F are functors and IndS is a strictly unitary pseudofunctor, defined
by the formulas

F(r, M) = (k, My cot),

U(k,M) =M,

Ind®(x, €) = IndS (L(C)).

The lower triangle commutes by construction; the upper triangle does not commute
on the nose, but Corollary 4.12 gives a pseudonatural Quillen equivalence Ind® o
F = U. Thus, to prove the claim, it suffices to show that U and (=), 0 IndS

induce equivalences of co-categories when localized at the maps whose images in
Pr8M are equivalences.
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We start from the claim on U. According to Lemma 4.14, the category CombSymS-Alg
is the colimit of CombSymS-Alg(k) as k ranges over urCard. It follows from [Lur25,
Tag 02UU] that U is already a localization.

Next, for (—), o Ind®, we factor it as

/ SMRelCatgear. (=) — SMRelCat ). prsat,(2.1)
urCard urCard

2, SMRelCatprsa,

urCard
where [

the functor x — SMRelCat,_p,sn,(2,1), concretely realized as (the dual of) Lurie’s
relative nerve [Lur09, Definition 3.2.5.2]. The functor ® is induced by the functors
{Ind3(L(—)),}x, and ¥ is the forgetful functor. As in the previous paragraph,
the functor ¥ is already a localization, so it suffices to verify that ® induces a
localization upon localizing at the maps whose images in Pr8M are equivalences.
This follows from (the dual of) [Araa, Corollary B.6] and Proposition 4.6, which
show more strongly that it induces a localization when localizing at fiberwise local
equivalences. The proof is now complete. ([l

SM ReIE_a\t(,)_(prgMﬁ(Qﬁl) denotes the cartesian fibration associated with

5. PROOF OF PROPOSITION 2.7

We finally turn to the proof of Proposition 2.7. In light of Propositions 2.5 and
2.6, it will suffice to prove this for one specific choice of S. To this end, we will
construct a new model category of symmetric cubical sets in Subsection 5.1. We
then use this to prove Proposition 2.7 in Subsection 5.2.

5.1. Symmetric cubical sets. In this subsection, we construct the symmetric
monoidal model category of symmetric cubical sets (Theorem 5.10). It models the
homotopy theory of spaces, in the sense that its underlying symmetric monoidal
oo-category is equivalent to the cartesian monoidal oco-category of spaces. We will
see that every combinatorial symmetric monoidal model category with cofibrant
unit can be enriched over symmetric cubical sets in an essentially unique manner
(Corollary 5.12).

Remark 5.1. Part of the contents of this subsection is similar in spirit to Isaacson’s
papers [Isall, Isa09]. In these papers, he considered symmetric cubical sets by
using a slightly bigger category of symmetric cubes. He then showed that every
combinatorial symmetric monoidal model category with cofibrant unit and satisfy-
ing the monoid axiom can be enriched over symmetric cubical sets [Isa09, Theorem
10.1]. However, his approach does not seem to give an essential uniqueness of this
enrichment.

We start by recalling the classical cube category and the Grothendieck model
structure.

Definition 5.2. The box category [ has the following descriptions:

e Objects are the posets [1]", where n > 0.

e A morphism f:[1]" — [1]™ is a poset map that erases coordinates and
inserts 0 and 1 without changing the order of the coordinates. Equivalently,
they are the generated under composition by the following maps:

(1) The face map §¢ = §4°:[1]* — [1]"* forn > 0and 1 <i < n+ 1,
which inserts ¢ € {0, 1} in the ith coordinate.

(2) The degeneracy map o' :[1]""! — [1]" forn > 0and 1 <i <n+1,
which deletes the ith coordinate.
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The cartesian product of posets makes [ into a monoidal category. It is also
naturally a Reedy category. The category Set™™ of cubical sets of admits an
induced monoidal structure, given by Day’s convolution. We will write O<; C O
for the full subcategory spanned by the objects [1]" with n < 1. The presheaf
represented by [1]™ will be denote by [O™.

The category Set™” can be endowed with a model structure which models the
homotopy theory of spaces. To state it more precisely, let 00" = J, _ "¢ (D”fl)

and M. = U260 §%¢(0"~1). We consider the following sets of morphisms of
cubical sets:

I={00"-=0"|n>0},J={M. =0"|n>1,1<i<n,ec{0,1}}.

Theorem 5.3. [Cis06], [Jar06, Theorem 6.2, Theorem 8.6, Theorem 8.8] The cat-
egory Set™™ of cubical sets has a combinatorial monoidal model structure called
the Grothendieck model structure, whose:

e cofibrations are the monomorphisms.
e weak equivalences are preserved and detected by the triangulation functor
Sett” 5 Set® p, which is the left adjoint carrying O™ — (Al)n.
Moreover, I and J cofibrantly generate this model structure, and T is a left Quillen
equivalence with respect to the Kan—Quillen model structure on simplicial sets.

Our goal for now is to consider the symmetric monoidal version of this.
Definition 5.4. We define the symmetric monoidal category of symmetric box
category Uy, by adjoining to the box category the permutation map m,: [1]™ — [1]™
for each n > 0 and p € X, defined by mp(z1,...,2,) = (,Tp—l(l),...,l'p—l(n)).

There is an inclusion 7:[J — Oy. We denote by US the presheaves on Uy, repre-
sented by [1]™. Note that [<; is a full subcategory of Osx.

Notation 5.5. The following proposition is immediate from the definitions:
Proposition 5.6. We have the following cocubical relations for maps in Ox:
o §IMEHE = §HESITLN for § <.
dbeai=t ifi < g,
e 07§ =<id if 1 =7,
0=tod  ifi > g
o glgt =glodtl jfi <.
® T,y = Tpq.

o T, = 5p(i)7rq, where q denotes the composite

{1,...,n}%{1,...,n+1}\{i}£>{1,...,n+1}\{p(i)}%{1,...,71}.
° O’iﬂp = ﬁqapil(i), where q denotes the composite
{1,...,n—1y={1,...n}\ {p (i)} ﬂ){l,...,n}\{i}%{1,...,71—1}.
Moreover, every map in Oyx, factors uniquely as
57:1751 . 57:n,5n,7-(-po-ljl . O—jTrL,
with i1 > - -ip, j1 < -+ < Jm, and p € 3.

Corollary 5.7. The symmetric cube category Uy, is generated by the face maps,
degeneracy maps, and permutation maps under the cocubical relations. A similar
claim holds for the classical cube category.
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Corollary 5.8. Let (C,®,1) be a symmetric monoidal category. The evaluation at
the unit object [1] € Oy determines a categorical equivalence

0: FU.D®(|:|Z, G) i> FU.D(DSl, G) XFun({[l]“},G) {1}
A similar claim holds for monoidal categories and the plain cube category.

Proof. The functor 6 needs a bit of explanation. If F:[y — C is a symmetric
monoidal functor, then its image in Fun(C<i1, €) Xpun({p1o},e) {1} is given by the
functor O<; — € obtained by modifying the value of F at [1]° to 1 using the
structure map 1 — F([1]°) of F.

With this in mind, we will give an explicit inverse equivalence to 6. Given a
functor F:O<; — € carrying [1]° to the unit object, we can define a new functor
F: Oy — @by F([1]") = F([1))®", with structure maps given by that of F and the
braiding of € (Corollary 5.7). The coherence maps of € makes F' into a symmetric
monoidal functor. The functor F — F is an inverse equivalence of 6. O

Corollary 5.9. Let (C,®,1) be a cocomplete symmetric monoidal category whose

tensor product preserves small colimits in each variable. The evaluation at the unit
op

object 0% € Set™s induces a categorical equivalence

Fun@’“(SetD;p, G) = Fun(O<1, €) Xpun((1oy.) {1},

where Fun®“¢ (SetD%p,e) denotes the category of symmetric monoidal categories

whose underlying functors preserve small colimits, and symmetric monoidal natural
transformations between them.

Proof. This follows from Corollary 5.8 and the universal property of Day convolu-
tion product monoidal structure. (I

For the following theorem, we will write L5, C %} for the subpresheaf consisting
of the maps [1]¥ — [1]™ that inserts at least one 0 or 1. Equivalently, we have
(900 = o,

Theorem 5.10. The category Set™® has a tractable model structure whose weak

op
equivalences and fibrations are preserved and detected by the forgetful functori*: Set™s —
Set™”". Moreover:

(I) The adjunction
e SetP” T Set™s: j*
—
is a Quillen equivalence.

(II) The model structure on Set™s s symmetric monoidal with respect to the
Day convolution.

(III) The model structure is left proper.

(IV) If M is a symmetric monoidal model category and F: Set™® — M is a
symmetric monoidal functor which is also a left adjoint, then F is left
Quillen precisely when the map F(6D1E — D%) is a cofibration, the map
F(O3) — F(OY%) is a weak equivalence, and the monoidal unit of M is
cofibrant.

(V) The assignment O% — (Al)n determines a symmetric monoidal left Quillen

. op op
equivalence Set™s 5 SetA™ .

The proof of Theorem 5.10 relies on the following lemma.
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Lemma 5.11. The diagram

Set”” 5 g0

J{ J{COlimDop

Set” " [weq 1] —=— 8
commutes up to natural equivalence.

Proof. We first give a model for colimger. Consider the functor
o - n~eO
o Fun(DOp,SetD ) s SetD” Yl—>/ Y, ® O".

Since the cocubical object [(1* € Fun (D, SetDop) is Reedy cofibrant, the functor ®

is left Quillen for the Reedy model structure [Lur09, Proposition A.2.9.26]. The
right adjoint of this functor, given by K — K5Y°, is weakly equivalent to that of
the diagonal functor on the full subcategory of fibrant objects. So ® is a model of
the homotopy colimit, in the sense that the induced functor functor

sH” 8

is equivalent to colimpop.

Now since every cubical set X is Reedy cofibrant when regarded as a level-
wise discrete cubical object in SetDop7 the above argument shows that the functor
P': Set™” — Sett” | X s ®(X) descends to the composite

SetP”  8U” 8.

The coYoneda lemma shows that ®’ is naturally isomorphic to the identity functor,
and the claim follows. O

Proof of Theorem 5.10. We start by showing that the model structure on Set™™”
transfers to a model structure on Seth’, using [Hir03, Theorem 11.3.2]. Let I =
o0 = 0" |n>0}and J = {1}, = 0" [n>1,1<i<mn,e€{0,1}} denote
the generating cofibrations and trivial cofibrations of Set™™ . We wish to show that
1* takes ii.J-cell complexes to weak equivalences. For this, it will suffice to show
that each of the map in ¢*¢)J is a trivial cofibration. The cofibration part is clear,
because ¢; and ¢* preserve monomorphisms. Consequently, it will suffice to show
that each of the maps in i*i1.J is a weak equivalence. We will prove this by showing
that the unit 7:id — ¢*4, is a natural weak equivalence.

By the standard argument using the skeletal filtration, it will suffice to show
that no-: 0" — ¢*4)0" is a weak equivalence for all n. In other words, our task
it to prove that each *)J" is weakly contractible. By Lemma 5.11 and [Lur09,
Corollary 3.3.4.6], this is equivalent to the condition that the category O ;0n =
U xpy, Usyop be weakly contractible for all n. Thus, it suffices to show that the
functor ¢:0 — Oy is homotopy initial. We prove this as follows: Consider the

commutative diagram

U——F——10¢

where [y C O denotes the subcategory spanned by the face maps. Since homotopy
initial functors have the right cancellation property [Cis19b, Corollary 4.1.9], it will
suffice to show that j and k are homotopy initial. We will show that j is homotopy
initial; the proof for k is similar. Our task is to show that the category Oy X, gn
is weakly contractible for every n > 0. But the inclusion O xp O,gn — O/gn
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admits a homotopy inverse, which factors a map as a composition of degeneracy
maps followed by a composition of face maps. So we are reduced to showing that
U/on is weakly contractible, which is clear.

We now prove (I) through (V). For (I), observe that we have just shown that
the derived unit is an isomorphism. Since Ri* is conservative by construction, the
triangle identities show that the derived counit is also an isomorphism. Hence the
adjunction is a Quillen equivalence. Part (II) follows from the fact that the model
structure on Set™” is monoidal for the Day convolution. Part (III) follows from
the left properness of SetDop, since 7* preserves cofibrations and small colimits and
detects weak equivalences. Part (IV) is proved exactly as in [Lawl7, Corollary 1.5].
Finally, part (V) follows from parts (I, IV) and Theorem 5.3. O

Corollary 5.12. FEvery cofibrantly genemted symmetric monoidal model category
M with a cofibrant unit is a symmetric Set™= -algebra in an essentially unique way.

More precisely, the category Fun® Le (Set ,M) is weakly contractible.

Proof. Define a full subcategory X of
FU.D(DSl, M)l = FU.D(DSl; M) X Fun({[1]°},M) {1}

as follows: An object of F' € Fun(C<;, M), can be identified with a diagram of the

form
1

\
F(1) —3 1.
) / i

We declare that such a diagram belongs to X if and only if the map 1111 — F([1])
is a cofibration, and the map F([1]) — 1 is a weak equivalence.
According to Theorem 5.10 and Corollary 5.9, there is an equivalence of cate-
gories
Fun® 1@ (Se’ED%p7 M) = .

Therefore, it suffices to show that X is weakly contractible. To this end, we de-
fine a functor ®: Fun(O<;,M); — Fun(O<;, M), as follows: It carries an object
(1111 —1—1) to an object (1111 — I’ — 1), where I’ is obtained by (functo-
rially) factoring the map 1111 — I as a cofibration 1111 — I’ followed by a
weak equivalence I’ = I. Then ® restricts to a functor @y : X — X. The functor
®y admits natural transformations to the identity functor and the constant func-
tor at ®(1111 — 1 — 1). Therefore, the identity functor of X can be connected
by a zig-zag of natural transformation to a constant functor. Hence X is weakly
contractible, as claimed. ([

5.2. Proof of Proposition 2.7. We can now give a proof of Proposition 2.7.

Proof of Proposition 2.7. As discussed at the beginning of the section, it will suffice
to prove the claim for a specific choice of S.

Take S = Set™® . The functor U CombSymS-Alg — CombSMMC? is a cocarte-
sian fibration, and 1ts fibers are weakly contractible by Corollary 5.12. It follows
from [Lur25, Tag 02LY] that U is already a localization, so in particular it induces
an equivalence

CombSymS-Alg[Quill.eq '] = CombSMMC* [Quill.eq™].
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6. VARIATIONS OF THE MAIN THEOREM

Notation 6.1. Throughout this section, we fix a left proper tractable symmetric
monoidal model category S with a cofibrant unit, whose underlying symmetric
monoidal co-category is equivalent to the cartesian monoidal co-category 8 of oo-
groupoids.

In Section 1, we introduced many variations of categories of symmetric monoidal
model categories. In this section, we will identify the localization of most of them.
We also identify the localization of their subcategories of left Quillen equivalences.

This section has two main results, one in the symmetric monoidal case (Theorem
6.2), and the other in the non-symmetric monoidal case (Theorem 6.4). Let us start
by stating the symmetric monoidal case.

Theorem 6.2. Consider the diagram of categories introduced in Section 1:

TractSMMCg semi

/

TractSMMCg ———— TractSMMC ——— TractSMMCgepmi

| |

CombSMMCg ———— CombSMMC

(1) All of the vertices in the diagram localize to PrSM via the underlying sym-
metric monoidal co-category functor.

(2) Assertion (1) remains valid if we replace each vertex by the full subcategory
consisting of those objects with a cofibrant unit.

(8) Consider the subcategories of each vertex in the diagram spanned by Quillen
equivalences. They localize to the maximal sub co-groupoid PrSM~ C PrSM
via the underlying symmetric monoidal co-category functor.

(4) Assertion (3) remains valid if we replace each vertex by the subcategory
consisting of those objects with a cofibrant unit and Quillen equivalences
between them.

Remark 6.3. Informally, part (3) of Theorem 6.2 asserts the following:

e presentably symmetric monoidal co-categories are presented by combina-
torial symmetric monoidal model categories;

e such presentations are unique up to zig-zags of Quillen equivalences;

e such zig-zags are themselves unique; and so on.

More precisely, for every C € Pr8M, the co-category

CombSMMC?* xprspe= (PrSMT) ¢

is weakly contractible, where CombSMMCPF < CombSMMC denotes the subcat-
egory of Quillen equivalences. This follows from the fact that a functor into an
oo-groupoid is a localization if and only if it is final [Cis19a, Proposition 7.1.10].

Distressingly, some of our method does not extend to the monoidal setting.
Because of this, the monoidal version of Theorem 6.2 takes the following form:
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Theorem 6.4. Consider the diagram of categories introduced in Section 1:

TractMMCsg semi
TractMMCg TractMMCgemi
CombMMC(s.

(1) All of the vertices in the diagram localize to PrMon via the underlying sym-
metric monoidal co-category functor.

(2) Assertion (1) remains valid if we replace each vertex by the full subcategory
consisting of those objects with a cofibrant unit.

(8) Consider the subcategories of each vertex in the diagram spanned by Quillen
equivalences. They localize to the mazximal suboo-groupoid PrMon= C PrMon
via the underlying symmetric monoidal co-category functor.

(4) Assertion (3) remains valid if we replace each vertex by the subcategory
consisting of those objects with a cofibrant unit and Quillen equivalences
between them.

Remark 6.5. Part (3) of Theorem 6.4 implies that every tractable monoidal semi-
model is Quillen equivalent to a simplicial one. This gives a partial solution to
an open problem by Hovey [Hov, Problem 10], which asks whether every monoidal
model category is Quillen equivalent to a simplicial one.

We now turn to the proof of these theorems. A key step in the proofis a functorial
replacement of semi-monoidal model categories by simplicial ones. The basic idea
is that of Dugger [Dug0O1lb|, who observed that if M is nice model category, the
category sM of simplicial objects can be made into a simplicial model category
with respect to a Bousfield localization of the Reedy model structure, assuming
that it exists. Unfortunately, his idea does not apply directly to our setting, so we
need a bit more work.

We will start by recalling Dugger’s idea. Most of the following lemma can be
found in [DugO1b]. We present a slightly more streamlined proof than loc. cit.

Lemma 6.6. Let M be a tractable semi-model category. The Reedy semi-model
category sMreeay of simplicial objects in M admits a left Bousfield localization,
denoted by sMReedy,loc, With the following properties:

(1) Fibrant objects of sMReedy,loc are the Reedy fibrant simplicial objects X
such that the map X9 — X, is a weak equivalence for all n > 0.

(2) The diagonal functor §: M — sMReedy loc 1S @ right Quillen equivalence.

(8) sMReedy,loc 15 a sSet-enriched semi-model category.

Proof. Consider the functor
(MA7) = (M)A < v,

where the first equivalence is that of [Cis19a, Theorem 7.9.8|. Since A°P is weakly
contractible, the right adjoint of this functor is fully faithful [Lur09, Corollary
4.4.4.10]. Thus, applying Proposition B.4 (or rather, Remark B.5) to this functor,
we obtain a semi-model structure sMReedy,loc 011 sM satisfying conditions (1) and
(2).
For (3), we must describe the simplicial enrichment of sM. If X and Y are
simplicial objects in sM, we define the mapping simplicial object Map(X,Y) as
follows: Given a simplicial set S, we define a new simplicial object S ® X € sM
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by (S® X),, = [lg, Xn. We then define Map(X,Y), = Homgm(A" ® X,Y). This
makes sM into a simplicial category.

To complete the proof, we must show that sMReedy,loc is an sSet-enriched model
category. Let (f)s: sM — sM denote the right adjoint of the functor S ® —. We
must prove the following:

(i) If i: K — L is a cofibration in sSet and f: X — Y is a Reedy cofibration
of Reedy cofibrant objects of sM, then the induced map

O KYlgex LOX - LY

is a Reedy cofibration.

(ii) In the situation of (i), if further f is a weak equivalence of sMRgeedy,loc
then so is (O f.

(iii) In the situation of (i), if further ¢ is anodyne, then i(1f is a weak equivalence
of SMReedy,loc-

To prove these assertions, choose generating sets I and J of cofibrations and
trivial cofibrations of M whose elements have a cofibrant domain. Also, for each
n > 0, write i, : A™ — A™ for the inclusion. The Reedy semi-model structure on
M is generated by the sets I = {i,(i | n >0, i€ I} and J = {i,0j | n >0, j € J},
and assertion (i) is immediate from this.

For (ii), by two out of three it suffices to show that the maps K ® f (and L ® f)
are weak equivalences. By part (i) and [JT07, Lemma 7.14], this will follow if we
show that (—)K: 8MReedy,loc = SMReedy,loc Preserves fibrations of fibrant objects.
The explicit generating set above makes it clear that (f)K carries Reedy fibrations
to Reedy fibrations. Since a map of fibrant objects of sMRgeedy,loc is @ fibration
if and only if it is a Reedy fibration [Hir03, Proposition 3.3.16], we are therefore
reduced to showing that (f)K preserves fibrant objects of sMReedy,loc-

Let X € sMReedy,loc be fibrant. We already know that X K is Reedy fibrant, so
it suffices to show that the map 0: (X K )0 — (X K )n is a weak equivalence for all
n. For this, set hom(S, X) = hmA“aSe(A/S)OP X, for each simplicial set S. We

can then identify # with the map hom(K x AD X) — hom(K x A™, X). To prove
that this is a weak equivalence, it suffices to show that the map

hom(A°, X) — hom(A™, X)

is a weak equivalence (see the argument of [Cis19a, Proposition 4.6.1]). This follows
from our assumption on X.

Finally, for (iii), by [JT07, Lemma 7.14], it suffices to show that for each fibration
p: E — B of fibrant objects, the map

ithp: EL — EX x5z BE

is a trivial fibration. We already know from (i) that this is a fibration, so it suffices
to show that the map EX — EX and BY — BX are weak equivalences. Using
(the argument of) [Cis19a, Proposition 4.6.1], it will suffice to prove this in the case
where i is a map of the form A% — A™. In this case, the claim is clear, because E
and B are assumed to be fibrant in sMReedy,loc- O

Unfortunately, when M is a monoidal semi-model category, it seems difficult
to compare sMReedy,loc With M via a monoidal left Quillen functor. An obvious
comparison map would be the diagonal functor M — sM, but it is rarely left
Quillen. So we need to increase the class of cofibrations of to force this to be true,
and this is what we are going to do.

To state the next lemma, it will be useful to introduce the following terminology.
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Definition 6.7. We say that a semi-model category M is xk-tractable if it satisfies
the following pair of conditions:

(1) The underlying category of M is locally x-presentable.
(2) The (essentially small) class of cofibrations of k-compact cofibrant objects
of M generates the class of cofibrations of M.

Lemma 6.8. Let x be an uncountable regular cardinal, and let M be a k-tractable
semi-model category. There is a rk-tractable semi-model structure on sM, denoted
by sM.inj10c With the following properties:

(1) Cofibrations are generated by the maps X — Y such that, for each n > 0,
the map X, — Y, is a cofibration of k-compact cofibrant objects of M.

(2) Weak equivalences are the hocolim-equivalenes, i.e., maps inducing weak
equivalences between the homotopy colimits.

(3) The diagonal functor §: M — sMin;j 1oc is a left Quillen equivalence.

(4) 8Minj loc 8 a sSet-enriched semi-model category.

(5) If M is a monoidal semi-model category, then sMiyj1oc s also one for the
degreewise tensor product.

Proof. We first construct a k-tractable semi-model structure satisfying conditions
(1) through (3) [BW24, Theorem B|. (Note that, since  is uncountable, k-compact
objects of sM are simply the levelwise k-compact simplicial objects [Low13, Propo-
sition 2.23|.) Call a map X — Y of sM an k-injective cofibration if it is a cofi-
bration in the sense of condition (1). We also say that a map of sM is a x-injective
fibration if it has the right lifting property for k-injective cofibrations. We must
verify the following:

(i) The full subcategory of Fun([1], sM) spanned by the hocolim-equivalences
is an accessible subcategory.’
(ii) Every s-injective fibration is a hocolim-equivalences.
(iii) Given a pushout diagram

X — X

Yy — Y’

of k-injectively cofibrant objects, if 7 is a hocolim-equivalence and a k-
injective cofibration, so is 7'.

For part (i), by [Lur09, Proposition 5.4.6.6], it suffices to show that

MA™ (MAOP) ~ (Moo)Aop colim, Mo
o0

is accessible. The functor colim is clearly accessible (being a left adjoint), so it

suffices to show that the first functor is accessible. This follows from the fact that

for a sufficiently large regular cardinal k, weak equivalences of MA™ are stable

under x-filtered colimits in MA™ (see [RR15, Proposition 4.1]).

For part (ii), let p: X — Y be a s-injective fibration of sM. We claim that p is
levelwise a weak equivalence (hence a hocolim-equivalence). Since M is k-tractable,
it suffices to show that every lifting problem as depicted in the left-hand diagram
below admits a solution, provided that i is a cofibration of k-compact objects of

5In [BW24], it is required that weak equivalences with cofibrant domains span an accessible
full subcategory. However, the proof goes through without cofibrancy assumption, as verified via
private communication with David White.
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M:
A— X, A" @6(4) — X
B -
iJ, o J{p A"@é(i)l o P
B——Y, A" @ §(B) — Y.

The lifting problem is equivalent to the one on the right, which is solvable because
A" ® 6(1) is a k-injective cofibration.

Par (iii) is clear, because such squares are homotopy cocartesian in MA™ (as it
is levelwise homotopy cocartesian).

Next, we prove (4). Let i: K — L be a monomorphism of simplicial sets, and let
f+ X =Y be a generating -injective cofibration sM_inj1oc. We must show that
the map

i0f: (KeY)lggx (L@ X) > LeY

is a k-injective cofibration cofibration, and that it is a weak equivalence if either i
or f is one. For the claim on cofibration, it suffices to prove this in the case where
1 is the boundary inclusion OA™ C A™ for some n > 0. In this case, i(]f is another
generating k-injective cofibration, so there is nothing to prove. For the acyclic part
of the claim, find a commutative diagram

x Ly

|
x 1.y
where p and g are trivial Reedy fibrations, X’ is Reedy cofibrant, and f’ is a Reedy

cofibration. We then have a diagram

(K®Y')lgegx (LX) —— LY’

! |

(K®Y)ggx (LOX) —— LY

whose vertical arrows are levelwise weak equivalences (because the pushouts are
levelwise homotopy pushouts). Thus, it suffices to show that i1’ is a weak equiv-
alence. This follows from Lemma 6.6.

Finally, we prove (5). Suppose that M is a monoidal model category. We must
show that sM_inj 1oc is also a monoidal model category. The only nontrivial part is
the acyclic part of the pushout-product axiom. For this, it suffices to show that for
each cofibrant X € sM,,_inj 1oc, the functors X ® —, —®X: sM,.injloc = $My-inj,loc
preserve weak equivalences of cofibrant objects. This follows from the fact that
AP ig a sifted co-category [Lur09, Lemma 5.5.8.4], so that hocolimaer (X ® V) ~
(hocolimaer X)® (hocolimaer Y') whenever X, Y € sM are levelwise cofibrant. The
proof is now complete. O

Proof of Theorems 6.2 and 6.4. We consider the symmetric monoidal case; the monoidal
case is similar. We start with Part (1). We treat each case separately:

e CombSMMC: This is the content of Theorem 2.4.

e TractSMMC: The proof of Theorem 2.4 goes through by replacing CombSMMC
by TractSMMC.

e TractSMMCg and CombSMMCg and TractSMMCg ¢emi: The proof of Propo-
sition 2.6 goes through by replacing CombSymS-Alg by these categories.
(In the semi-case, we only need S to be a left proper tractable symmetric
monoidal semi-model category.)
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e TractSMMCqepi: For each uncountable regular cardinal &, we let TractSMMCgemi(k) C
TractSMMCgepi denote the subcategory spanned by the objects whose un-
derlying semi-model categories are s-tractable, and the morphisms that
preserve k-compact objects. We define TractSMMCsset semi() similarly.
Lemma 6.8 gives us a functor

urCard
/ TractSMMCgemi(—) — TractSMMCset semi (%),
(Ka M) = SMH—inj,lOC?

which fits into the (non-commutative) diagram

furcard TractSMM Ceset somi (—) —2— furcard TractSMMCyemi(—)
7T / !
J{ / D J{‘n’

TractSMMCsset, semi — TractSMMCgepni-

Here 7,7n', U, U’ are all forgetful functors. Since TractSMMCsset semi is the
colimit of TractSMM  Csset semi() as k ranges over urCard, the functor = and
7’ are localizations [Lur25, Tag 02UU]. Thus, it suffices to show that the
diagram commutes up to equivalence when we localize these categories by
Quillen equivalences.

By Lemma 6.8, the lower triangle commutes up to natural Quillen equiv-
alence. For the upper triangle, recall from the previous bullet point that
the composite

TractSMMCaset somi - TractSMMCyemi — Pr&M

is a localization at Quillen equivalences. We also have a natural Quillen
equivalence U'r = U’'®U by Lemma 6.8, so this proves the claim on the
lower triangle.

Part (2) follows from part (1) and Muro’s theorem [Murl5, Theorem 1] or its
enriched version (Proposition C.1). Parts (3) and (4) are proved similarly, noting
that the proof of Theorem 2.4 goes through if we restrict our attention to the
relevant subcategories. This completes the proof of the theorem. (I

APPENDIX A. MULTIPLICATIVE GABRIEL-ULMER DUALITY

The Gabriel-Ulmer duality [GU71] is one precise formulation of the slogan that
“locally presentable categories are controlled by small data.” In the co-categorical
setting, it asserts that for every regular cardinal , the Ind,-completion functor

Ind, : Cat'd®™ (k) — PrP (k)

is an equivalence. Here Catid™(k) denotes the oo-category of small idempotent
cocomplete co-categories with x-small colimits and functors preserving x-small col-
imits, and Pr¥ (k) denotes the co-category of s-presentable co-categories.®

The goal of this section is to enhance this to an equivalence of symmetric
monoidal oco-categories (Proposition A.5 and Corollary A.6). As a corollary to
this, we obtain a Gabriel-Ulmer duality for s-presentably monoidal co-categories
(Corollary A.8).

For the following definition, we recall that the co-category Pr’ admits a natural
symmetric monoidal structure [Lurl7, Proposition 4.8.1.15].

6An oco-category is k-presentable if it is k-accessible and presentable.
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Definition A.1. Let x be a regular cardinal. We write Prl(x)® C (’J’rL)®
for the suboperad spanned by the x-presentable oo-categories and those maps
(€1,...,C,) — € whose corresponding functors F:C; X --- x €, — € have the
following property:

e Given an object (X1,...,X,) € C; X --- x G, if each X, is k-presentable,
then so is F(X1,...,Xp,).

Given another object D € Pr¥(k), we write Fung,z () (€1, ..., Cp), D) C Fun(Cy x -
for the full subcategory spanned by the maps (€1,...,C,) — D in Prk (FL)®.

Our goal for the moment is to show that Pr(x)® is a symmetric monoidal oo-
category, and upgrade the Gabriel-Ulmar duality to a symmetric monoidal equiv-
alence Pr(x)® (Proposition A.5).

Definition A.2. Let k be a regular cardinal. We write Cat'd®™(x) for the oo-
category of idempotent complete small co-categories with r-small colimits. We

also write @tiem(ﬁ) for the oo-category of large but essentially small, idempotent
complete oco-categories with k-small colimits. Each of these co-categories have a
natural symmetric moniodal structure, as explained in [Lurl?7, Corollary 4.8.1.4].
(Briefly, if A, B, € € Catide™ (), then a giving a map A ® B — € is equivalent to
giving a functor A X B — € that preserves k-small colimits in each variable.) We
denote these symmetric monoidal co-categories by Catide™()® and @:iem(ﬁ)&
(When & is uncountable, we drop idem from the notation because idempotent com-
pleteness is automatic.)

Our goal for the moment is to show that Pr” (k)% is a symmetric monoidal oo-
category, and upgrade the Gabriel-Ulmar duality to a symmetric monoidal equiv-
alence (Proposition A.5).

Construction A.3. For each € € Cat'd®™(k), the x-ind completion Ind,(C) is a
k-presentable co-category and is characterized by the following universal property:
For every D € Prf(k), the map

Fung,z () (Ind, (€C), D) = Fun C,Dy)

Gat:iem(ka)(

is a categorical equivalence (|[Lur09, Propositions 5.3.5.10 and 5.5.1.9]). It follows

- X €y, D)

that the assignment € + Ind,(C) can be assembled into a left adjoint Ind,: Catide™ (k) —

Prl (k). By inspecting the unit and counit, we deduce that this functor is in fact
an equivalence of oco-categories. Using [Lurl7, Remark 4.8.1.8], we find that the
k-ind completion functor Ind,: Catid®™ (k) — Prf can be enhanced to a symmetric

monoidal functor Ind,: Catide™ (x)® — (fPrL)®.

Remark A.4. The proof of [Lur09, Proposition 5.5.1.9] and [Lur09, Propositions
5.3.5.10] give a stronger universal property of Ind,(C), where C € Cat'dem (k).
Namely, if D is an oo-category with small colimits, the functor

Fun’(Ind.(C), D) = Fun,(€, D)
is an equivalence. Here Fun”(Ind,(€), D) C Fun(Ind,(C), D)denotes the full sub-

category of functors preserving small colimits, and Fun, (€, D) C Fun(C, D) denotes
the full subcategory of functors preserving x-small colimits.
Proposition A.5. Let k be a reqular cardinal.

(1) The oco-operad iPrL(m)® s a symmetric monoidal co-category, and the in-
clusion Prl(k)® < (fPrL)® is symmetric monoidal.
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(2) The symmetric monoidal functor Ind,: Catidem(x)® — (CPrL)® restricts

; : ; : idem ® =
to an equivalence of symmetric monoidal co-categories Cat't®™(k)® —

Pri(r)®.
Proof. We start with (1). Let Cq,.. ., C, be k-presentable oco-categories. We wish to
show that there is a k-presentable co-category € and a morphism (Cq,...,C,) — €

in Prl (k)% with the following properties:
I For every D € Pr, the functor
0r: Fungp,r(C,D) — Fung,z((C1,...,Cr), D)
is an equivalence.
II For every D € Prl(x), the functor
Orr: Fungp,z () (€, D) — Fungp,z(,)((C1,...,Cn), D)
is an equivalence.

To this end, choose A; € Catide™ (k) and equivalences Ind,(A;) = €;, and set C =
Indk(A; ® -+ @ Ak). Using Remark A.4 repeatedly, we obtain a functor a: Gy x
-+ X G — C that preserves colimits in each variable separately and which makes
the diagram

Ay x oo XAy — Cp x--- x By

/| Jo

A ¢
commutative up to equivalence. The commutativity of the diagram implies that «
determines a morphism «: (€1,...,C,) — Cin ﬂ)rL(FL)®. Remark A.4 shows that

« satisfies condition (I). It follows that the functor €;; in condition (II) is fully
faithful. To show that it is essentially surjective, it will suffice to show that the
essential image of o/ generates A under x-small colimits. This follows from the
proof of [Lurl7, Proposition 4.8.1.3], proving (1).

Next, we prove (2). Since Ind,: Cat'd®™(x) — Prl (k) is an equivalence of oco-
categories, it suffices to show that Ind, carries Cat'de™ (£)® into Pr’(x)®. (Because
this and part (1) will prove that the resulting functor Cat'de™(k)® — Pri(x)®
is symmetric monoidal.) This is equivalent to saying that Ind,:Cat'dem(x)® —
(iPrL)® carries active cocartesian morphisms into (TJ)rL(F;))®, which follows from
the proof of (1). The proof is now complete. O

We conclude this subsection with three corollaries of Proposition A.5.
Corollary A.6. Let k be a regular cardinal. The forgetful functor
(=) PrE(R)® — Batg " ()®
is an equivalence of symmetric monoidal oo-categories.

. ~ ———idem
Proof. The composite Ind, : Catidem(x)® =5 Pri(x)® — Caty. (k)% is equivalent
to the inclusion, which is an equivalence of symmetric monoidal co-categories. [J

Definition A.7. Let C be a monoidal co-category, and let k be a regular cardinal.

We say that € is k-presentably monoidal if it satisfies the following conditions:
(1) The underlying oo-category of € is k-presentable.

(2) For every n > 0 and k-presentable objects X1, ..., X,, € C, the object X; ®

.-+ ® X, is k-presentable. (In particular, the unit object is k-presentable).

We write x-PrSM C SMéa\too for the subcategory of k-presentably monoidal co-
categories and monoidal functors that preserves small colimits and x-presentable
objects.
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Corollary A.8. Let k be a regular cardinal. The forgetful functor

(), €% €2

——idem
K-PrSM — SMCat
——idem —
is a categorical equivalence, where SMGatooe (k) C 8MCats denotes the subcate-
gory of essentially small monoidal co-categories compatible with k-small colimits,
and those monoidal functors preserving k-small colimits.

Proof. This follows from Corollary A.6 and the straightening—unstraightening equiv-
alence. 0

Corollary A.9. Let k be a regular cardinal, and let I: SMCat'd®™ (k) — r-Pr8M
be a functor equipped with a natural transformation depicted as

SMEatidem (1) ! K-Pr$M
SMCate.

Suppose that, for each C € SMCatoo(k), the map ae: C — I(C) exhibits I1(C) as an
Ind, -completion of C. Then I is a categorical equivalence.

Proof. The natural transformation o determines a natural equivalence
e =I(e),

from the inclusion ¢: MCats (k) — SMCaty (k) to the composite SMCaty (k) ER

r-Pront 8MCatw (x). The functors ¢ and (—), are equivalences (Corollary

A.8), so we find that I is also an equivalence. (I

APPENDIX B. MISCELLANEOUS RESULTS ON LOCALIZATION

In this appendix, we record some results on localization of co-categories.

B.1. Base change of localization. Let L: € — D be a localization of co-categories,
and suppose we are given a pullback square in Cats,

e —D

qo s

D — D.

The functor L’ is not generally a localization. This naturally raises the question of
when L’ is actually a localization. The goal of this subsection is to record a few
results related to this question.

We start with a sufficient condition for a localization functor to be stable under
base change; such a functor is called a universal localization. (A general crite-
ria for universal localization is discussed in [Hin24|.) The following theorem says
that localization of oo-categories with weak equivalences and fibrations [Cis19a,
Definition 7.4.12] (such as that of model categories) enjoy this property:

Theorem B.1. Let C be an co-category with weak equivalences and fibrations. The
localization functor

€ — Clweq ]

18 a universal localization.

The proof of Theorem B.1 requires the following lemma:
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Lemma B.2. Let C be an oo-category, let W C C be a subcategory containing
all objects, and let L: C — D be a functor of co-categories which carries every
morphism in W to an equivalence. If for each n > 0, the functor

01 : Fun([n], €) xent1 W — Fun([n], D)~
is a weak homotopy equivalence, then L is a universal localization.

Proof. In the case where W is the subcategory of morphisms mapped to equiva-
lences in D, this is more or less immediate from Mazel-Gee’s localization theorem
(see [MG19, Theorem 3.8] or [AC25, Theorem 1.1]) and can be deduced from [Hin24,
Lemma 1.3 and 1.5]. The proof of the general case we present below is very sim-
ilar. (In fact, we do not need this generality for this paper, but we record it for
completeness.)

Let D' — D be a categorical fibration of co-categories, and set ¢’ = D’ xqp
C. We must show that the functor L: €' — D’ is a localization. For this, let
W = (D)~ xp W C €. We claim that L’ is a localization at W'. According to
the generalized Mazel-Gee’s localization theorem [Ara23, Theorem 1.7], it suffices
to show that for each n > 0, the map 6/, is a weak homotopy equivalence.
But 6/, is a pullback of the map 6, along the the Kan fibration Fun([n], D)~ —
Fun([n], D), so the claim follows from the right properness of the Kan—Quillen
model structure. (I

Proof of Theorem B.1. Let W C € denote the subcategory of weak equivalences.
By [Cis19a, Remark 7.5.22], we may assume that W is saturated, i.e., that it consists
of the morphisms whose images in L(C) = C[weq~!] are equivalences. By Lemma
B.2, it will suffice to show that the functor

O n: Fun([n], €) xent1 W' — Fun([n], L(€))

is a weak homotopy equivalence for every n > 0. By [Cis19a, Theorem 7.4.20], the
oo-category Fun([n], C) has the structure of an co-category with weak equivalences
and fibrations whose subcategory of weak equivalences is given by Fun([n], €) X gn+1
WntL Moreover, by [Cis19a, Theorem 7.6.17], the functor

L(Fun([n], €)) — Fun([n], L(C))

is a categorical equivalence. Therefore, the map 6, ,, can be identified with Opyn([n),¢),0-
Thus, replacing € by Fun([n], €), we are reduced to showing that fco: W — L(C)
is a weak homotopy equivalence. This is the content of [Cis19a, Lemma 7.6.9], and
the proof is complete. O

We next consider the interaction of pullback and homotopy equivalences of rel-
ative oo-categories.

Proposition B.3. Consider a diagram [2] x [1] — Cats depicted as

A f B

v
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where the squares are all cartesian. Regard A and B (resp. A" and B’) as relative
oo-categories whose weak equivalences are the maps whose images in € (resp. €')
are equivalences. Suppose that the following conditions are satisfied:

(1) The functor f: A — B is a homotopy equivalence of relative co-categories.
(2) The functor u: €' — C is conservative (i.e., reflects equivalences).

Then f' is a homotopy equivalence of relative co-categories.

Proof. We claim that there are maps g: B —+ A and i: B — B in Cat /e and a
diagram of the form

B x {O} fg

T

(B.1) BxJ 25 B

—

B x {1} i

in Caty, e, where:

(I) Jis a weakly contractible co-category equipped with two distinguished ob-
jects 0,1 € J.
(IT) For each B € B, the functor ®|{B} x J carries each morphism to a weak
equivalence.
(IIT) The functor ¢ is an equivalence of oo-categories.

(IV) B x J lies over € via the composite B x J 25 B L €.

Changing base along the map €’ — @, we obtain functors ¢’: B’ — A’, i": B/ —
B’, and ¢': B’ xJ — B’. Using condition (2), we find that &’ witnesses that f’ has
a right homotopy inverse. Applying the same argument to g, we find that ¢’ also
has a right homotopy inverse. It then follows from the two out of six property of
homotopy equivalences that f’ is a homotopy equivalence of relative categories.

To prove the above claim, use condition (1) to find a relative functor g: B — A
and diagrams of the form (B.1) in Cat, (not Cat /e yet!) that satisfy conditions
(I), (IT), and (III). Let S denote the set of morphisms of B x J of the form (B, z) —
(B,y), where B € B and z — y is a moprhism in J. By condition (I), ¢® factors
through the localization (B x J)[S~!] ~ B x J[J~!]. Since J is weakly contractible,
this localization can be identified with B, with localizing functor given by the
projection B x J — B. Thus, there is a diagram [1] x [1] — Cats of the form

BxI 2,8

|l

Bﬁ

Since r ~ (¢®)|B x {1} = ¢, we may assume that » = ¢. Thus we obtain a diagram
o: [2] = Cats whose boundary is depicted as

BxJ -2,

B
\lq
gopr

C.
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We now contemplate the diagrams ([1] x [1])” — Cats, and [3] — Cat,, depicted
as

Bx {0} —L— 5 A Bx] —2 B

[ P

Bx7J B B x {1}

\\ N

The left-hand diagram is constructed as follows: Think of this as an amalgamation
of two 3-simplices A% — Caty,. The front 3-simplex is obtained by filling the horn
A3 C A3, using o, the natural equivalence fg ~ ®|B x {0}, and the 2-simplex
corresponding to the equality g o pr|B x {0} = ¢. We then fill the 3-simplex in the
back by filling the horn A3 C A3. Likewise, the right-hand 3-simplex is obtained
by filling the inner horn A C A3. These diagrams lifts the maps g,4, and ® to
those in Cat,, e, and they give rise to a diagram in Cat,, e satisfying conditions
(I) through (IV). The proof is now complete. O

B.2. Bousfield localization. In this subsection, we record a proof of the following
well-known result on Bousfield localization. It has been certainly floating in the
literature for quite some time, but we could not find a proof.

Proposition B.4. Let M be a combinatorial left proper model category with un-
derlying oo-category M, and let F:M — N be a functor admitting a fully faithful
right adjoint, where N is presentable. There is a left Bousfield localization N of M

whose weak equivalences are the maps inverted by the composite M — M ENEN
Moreover, the induced functor N — N is a localization at weak equivalences.

Proof. Recall from [Lur09, Proposition 5.5.4.2] that there is a small set S of mor-
phisms of M with the following property: An object M € M lies in the essential
image of the right adjoint G:N — M if and only if it is S-local, i.e., M(f, M) is
an equivalence for every f € S. By [Barl0, Theorem 4.7], there is a left Bousfield
localization LgM of M at .S, which has the following description:
e Fibrant objects are the fibrant objects of M whose image in M is S-local.
e Weak equivalences are the maps inverted by the composite M — M N

Using the universal property of localization, we obtain functors ¢: M — (LsM)[weq™?]
and 1: (LsM)[weq~!] — N, and the diagram

M r N

v~ A

(LsM)[weq ]

commutes up to natural equivalence. The functors F' and ¢ are localizations because
it has a fully faithful right adjoint [Lur25, 04JL]|. Moreover, a morphism of M is
inverted by F if and only if it is inverted by ¢. This means that F' and ¢ are
localization at the same class of maps, so v is an equivalence. It follows that the
functor LsM — N is a localization. Therefore, the left Bousfield localization LgM
has the desired properties. (I

Remark B.5. An analog of Proposition B.4 is true in the semi-model categorical
setting. More precisely, if we assume that M is a tractable semi-model category,
then it admits a (semi-model categorical) left Bousfield localization N satisfying
the conditions in Proposition B.4. The proof is essentially the same, using [BW24,
Theorem A] in place of [Barl0, Theorem 4.7].
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APPENDIX C. ENRICHED MURO’S THEOREM

In this section, we show that monoidal V-model categories can be made into
ones with a cofibrant unit by changing the class of cofibrations. The result is a
minor generalization of [Murl5, Theorem 1], which establishes the corresponding
theorem in the unenriched setting.

Proposition C.1. Let V be a combinatorial symmetric monoidal model category
with a cofibrant unit, and let M be a combinatorial monoidal V-model category.
There is another combinatorial monoidal V-model structure on the underlying V-
monoidal category of M, denoted by M, satisfying the following conditions:

(1) The weak equivalences ofM are the weak equivalences of M.
(2) Every cofibration of M is a cofibration of M.
(8) The unit object is cofibrant in M.
Moreover, it satisfies the following universal property:
(4) Let N be another monoidal partial V-model category with a cofibrant unit.
Then every monoidal left Quillen V -functor M — N extends uniquely to a
left Quillen V-functor M — N.

An analogous claim holds for tractable semi-model categories.

Proof. We consider the case of model categories. We will follow [Murl5|. We will
use the following notation:
e Given a morphism f: A — A’ in V or M and a morphism g: B — B’ in V
or M, we write f[g for their pushout product

A B lagp A®B— A B

whenever the notation makes sense (i.e., either (i) both f and g are maps
of V, (ii) f is a morphism of V and g is a morphism of M, or (iii) both f
and g are morphisms of M.)

e If S and T are collections of morphisms in V or M, we will write SOT =
{sOt | s € S,t € T} whenever the right hand side makes sense.

o Ifi: A— B and p: X — Y are morphisms of M, we will write (i, p) for their
pullback power

M(BaX) — M(AaX) ><M(A,Y) M(B5Y>a

where we wrote M(—, —) for the enriched hom-objects of M.
e The symbol 1 will always mean the unit of M; when we need to refer to
the unit of V (which happens only once in the proof), we denote it by 1v.

Choose a weak equivalence q:I — 1 which witnesses Muro’s unit axiom in M.
Choose a factorization
1115051

of the map (g,id), where ¢ is a cofibration in M and 7 is a weak equivalence
in M. Let inc;:1 — 1111 denote the inclusion of the first summand, and set
K=10 inclzi — (. Also, choose generating sets In; and Jyp of cofibrations and
trivial cofibrations of M, and choose generating sets Iy and Jy of cofibrations and
trivial cofibrations of V. By enlarging Iy if necessary, we may assume that the
map § — 1y belongs to Ivy. Let ¢: 0 — 1 denote the unique map from the initial
object. We set

I = Im U (IvO{¢}),
Jgz = I U (IvO{k}) U (v D{6)).
We claim that there is a cofibrantly generated model structure on M with generating

sets of cofibrations and trivial cofibrations given by Iy and Jg;, and with weak
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equivalences given by those of M. Write Ig;-cof and Ig;-inj for the classes of I;-
cofibrations and Ig;-injectives; we also make use of similar notations, such as Jy-cof
and J3z-inj, and let W denote the class of weak equivalences of M. According to
[Hir03, Theorem 11.3.1], we must verify the following:
(a) Jyz-cof C (Igz-cof) NW. (In the case of semi-model categories, we replace
Jyz-cof by its subclass of maps with cofibrant domain.)
(b) Iyg-inj C (Jgz-inj) N W.
(¢) (Jgg-inj) N W C Igz-inj.
Before we prove (a) through (c), we observe that the associativity (up to natural
isomorphism) of pushout-product implies the following inclusion:
(d) (Iv-cof)d(Igz-cof) C (Igz-cof)
() ((Jv-cof)O(Igz-cof)) C Jgz-cof.
(f) ((Iv-cof)O(Jgz-cof)) C Jgz-cof.
Note that (d) implies:
(d") A map p of M is an Ig;-injective if and only if, for each Igz-cofibration 4,
the map (7, p) is a trivial fibration of V.
(There is a similar characterization of Jgz-injectives, but we will not need it in the
sequal.)
We also observe that:
(¥) The functor — ® 1: M — M preserves and detects weak equivalences.
(%) The morphism x ® 1isa Jnm-cofibration.

Indeed, assertion (x) is clear because — ® 1 is naturally weakly equivalent to the
identity functor. Assretion (xx) is a consequence of the fact that £ ® 1 is a Ip-
cofibration (being the composite of a pushout of ) — 1 and the map ¢ ® I) and is
a weak equivalence by (x).

Now we prove (a) through (c). We start from (a). To show that Jg-cof C
Igz-cof, it will suffice to show that Jg; C Ig;-cof. For this, in light of (d), it suffices
to show that x is an Ig;-cofibration. This is clear, because it is the composite of the
pushout of ¢ and the Ing-cofibration ¢. To show that Jg;-cof C W, we observe that
(Jyz-cof) ® 1 C Jy-cof by (). It follows from (%) that Jy-cof C W, as desired.

Next, we prove (b). Let p be an Ig;-injective. We must show that p € (Jﬁ—inj) N
W. Since Iz-inj C Im-inj = (Jm-inj) "W, it suffices to show that (k, p) is a trivial
fibration and (¢,p) is a fibration. By (d’), this will follow if x and ¢ are Ig;-
cofibrations. For ¢, this is clear. We have also seen in the previous paragraph that
K is an Igz-cofibration. Thus we have proved (b).

Finally, we prove (c). Let p € (Jﬁ—inj) N W. We wish to show that p € Ig-inj.
Since Jgz-inj C Jum-inj = (Im-inj) N'W, it suffices to show that (¢, p) is a trivial
fibration. Since ¢ is a retract of the map v:0 — C, it suffices to show that (1), p)
is a trivial fibration. For this, factor the map v as

P15 C
The map ¢~$is an Ing-cofibration, so <($,p> is a trivial fibration. The map (k, p) is a
trivial fibration by the definition of Jg;-injectives. Since (v, p) is the composition
of (k,p) and a pullback of <$,p>, this proves that (i, p) is a trivial fibration, as
desired.
We have thus shown that the sets It;, Jgz
of M gives rise to a model structure on M, which we denote by M. We complete

the proof by showing that M satisfies conditions (1) through (5). Conditions (1)
through (4) are immediate from the constructions, so we focus on (5).

and the class of weak equivalences
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Suppose that M is a monoidal model category. We must show that so is M, ie.,
that I;0I5; C Ig-cof, I;UJg; C Jyp-cof, and Jy; Ul C Jgg-cof. Using the fact
that M is a monoidal V-model category, and also using inclusions (a), (d), and (e),
we are reduced to showing the following:

(x % %) For every In-cofibration ¢, the maps ik and xJi are Jyp-cofibrations (and
hence Jgz-cofibrations).

To prove (x * *), we observe that ilJx is a composition of ilJ¢ and a pushout of
1 ® ¢ = 1. Since the maps i[1. and i are Ing-cofibrations, we deduce that i[Jx is an
Iv-cofibration. Moreover, we know from (#x) that £k ® 1 is an Jy-cofibration, so
(i0k)®1 is also a Jyp-cofibration. It follows from (%) that ik is a weak equivalence.
Hence iUk is a Jyp-cofibration. Likewise, kU is a Jpyg-cofibration. The proof is
now complete. [l
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