ON THE EQUIVALENCE OF BRANTNER AND
CHU-HAUGSENG’S APPROACHES TO ENRICHED cc-OPERADS

KENSUKE ARAKAWA

ABsTrRACT. We prove that two models of (monochromatic) co-operads, due to
Brantner and Chu-Haugseng, are equivalent. The equivalence will be proved
as a consequence of the equivalence of two models of monoidal co-categories of
symmetric sequences and composition product, due to Brantner and Haugseng.

INTRODUCTION

Operads were introduced by Boardman—Vogt [BV73] and May [May72] as a tool
to describe algebraic structures inherent in topological spaces. Soon after the in-
troduction, Kelly [Kel05] introduced a generalized notion of enriched operads to
describe algebraic structures of objects in symmetric monoidal categories. Since
their introduction, enriched operads have become indispensable in a wide range
of areas, from algebraic topology, algebraic geometry, homological algebra, mathe-
matical physics, and computer science to geometric topology [May72, BV73, Vall4,
LV12, BF21, BABW13|.

Despite its successes, the classical theory of enriched operads exhibits limitations
in homotopical settings. In particular, when one wishes to treat enriched operads
and their algebras “up to homotopy,” the classical theory turns out to be too rigid.
For example, in many cases, meaningful homotopy theory of algebras is available
only under strong cofibrancy assumptions on the operad (such as 3-cofibrancy).
This motivates the study of enriched co-operads, which describe algebraic structures
in symmetric monoidal co-categories and provide a more flexible framework.

As with many higher categorical generalizations of classical notions, enriched
oo-operads admit multiple constructions. One approach was developed in the work
of Chu-Haugseng [CH20], where the authors gave several equivalent definitions of
enriched oo-operads using “Segal-type” conditions. Around the same time, Brantner
constructed a different model of enriched co-operads [Bral7].

| | Developing abstract theories | Applications |

Chu-Haugseng Yes No
Brantner No Yes
TABLE 1. A quick comparison

These approaches have complementary strengths. On the one hand, Chu-Haugseng’s
approach is well-suited for developing abstract theories of enriched oc-operads, and
a substantial body of such theory has already been developed with their approach.
For example, it is compatible with the classical theory of oc-operads enriched in
spaces, or more generally, nice model categories [CH20, Theorem 5.2.10]; algebras
over enriched oco-operads in this sense are also known to be well-behaved and are
compatible with their strict counterpart [Haul9, Theorem 4.10]; and they admit a
characterization in terms of maps into endomorphism oo-operads [Haul9]. However,
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their approach is rather heavy and does not seem to be used much in applications.
In contrast, Brantner’s approach is comparatively lightweight and has been used ex-
tensively in the literature [FG12, Knul8, Ama22, BCN23, Heu24, ACBH25, HL24].
However, it is somewhat awkward to develop abstract theories of enriched oco-
operads with his approach. For example, it is not apparent from the definition that
his construction is functorial in the enriching symmetric monoidal oco-categories!
The contrast is summarized in Table 1.

Given the complementary roles of the two approaches, it is desirable to establish
an equivalence of these models. However, such a comparison has remained unavail-
able, resulting in two possibly different definitions of enriched co-operads. The goal
of this paper is to resolve this issue definitively.

To explain our result, we recall a standard perspective on operads. Namely,
monochromatic operads in a symmetric monoidal category can be described as an
algebra object in the monoidal category of composition product of symmetric se-
quences. Brantner and Haugseng constructed two seemingly different oo-categorical
refinements of the composition product monoidal structure [Bral7, Hau22|. More
precisely, to each presentably symmetric monoidal co-category C, they associated
monoidal oo-categories XSeqp (€) and YSeqy (€). The algebra objects in these
monoidal co-categories recover Brantner’s and Chu-Haugseng’s enriched co-operads,
respectively. Our main theorem then asserts that:

Theorem A (Theorem 1.17). There is a natural equivalence of monoidal oo-
categories
¥Seqp (€) ~ XSeqy (C).

As an immediate consequence, we find that Brantner and Chu-Haugseng’s defi-
nitions of monochromatic enriched oco-operads are equivalent. Moreover, Theorem
A gives something stronger. Indeed, the monoidal equivalence ensures that two
definitions of Koszul duality of enriched co-operads, based on the two models of en-
riched oco-operads, are equivalent to each other. To our knowledge, this comparison
has not previously appeared in the literature.

Our strategy for the proof of Theorem A is relatively simple: We “de-localize”
each monoidal oco-category to a model category. That this will produce a natural
equivalence is ensured by the main theorem of [Arab|, which asserts that the homo-
topy theory of (combinatorial) symmetric monoidal model categories is equivalent
to that of presentably symmetric monoidal co-categories. At present, we do not
know a direct oo-categorical proof of Theorem A. The absence of such a proof re-
flects the genuine subtlety of the problem rather than a deficiency of the approach.
While the underlying idea is simple, its implementation requires substantial tech-
nical work, as reflected in the length of the paper.

Organization of the paper. This paper consists of 6 sections and an appendix.

e In Section 1, we review the definitions of Brantner and Haugseng’s composi-
tion product monoidal structure, and then state our main theorem precisely.

e In Section 2, we recall the definition of monoidal localization and a few
related results.

e In Section 3, we establish a few key results on Day’s convolution product
and composition product from a model-categorical perspective.

e In Sections 4 and 5, we show that both Brantner and Haugseng’s models are
characterized by certain universal property involving symmetric monoidal
model categories and their localization.

e In Section 6, we give the proof of the main theorem.

e Appendix A is a brief summary of results on co-bicategories we need in the
main body.
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Notation and convention.

e Throughout the paper, we use the word oo-category as a synonym for
quasicategory in the sense of [Joy02]. We will mainly follow [Lur09b] and
[Lurl?] in various terminology and notation related to oco-categories.

e We will generally not notationally distinguish between categories and their
nerves, and bicategories with their Duskin nerves (Example A.9).

e If C is an oco-category, we denote its maximal sub Kan complex by €= and
refer to it as the core of C.

e We write Fin for the skeleton of the category of finite sets and set maps.
Explicitly, its objects are the sets n = {1,...,n} for n > 0. Various set-
theoretical operations will be replaced by categorical operations in this
category. For example, if f: S — T is a map in Fin and ¢t € T, then we
write f~1 () € Fin for the category-theoretic (not set-theoretic) fiber of f
over t.

e We write Fin, for the skeleton of the category of finite pointed sets and set
maps. Explicitly, its objects are (n) = ({x,1,...,n},x) for n > 0.

e We write FB for the maximal subgroupoid of Fin.

e Following |[Lurl7|, we use symbols like C®¥ — Fin, to denote a symmetric
monoidal co-category with underlying oco-category €. We typically denote
the unit object of €® by 1¢ = 1. We typically implicitly identify Fin, with
the larger category of all finite pointed sets and pointed maps by choosing
an inverse equivalence.

e If % and D® are symmetric monoidal co-categories, we write Fun® (€, D)
for the oo-category of symmetric monoidal functors €® — D® [Lurl?7, Def-
inition 2.1.3.7]. Similar notation will be used for monoidal co-categories.

o We write MonCat,, for the co-category of small monoidal co-categories.
Formally, it is defined as the homotopy coherent nerve of the simplicial cat-
egory whose objects are the small monoidal co-categories, and whose map-
ping simplicial sets are given by Fun® (—, —)~. (Equivalently, it is the co-
categorical localization of the ordinary category of monoidal co-categories
and monoidal functors at equivalences of monoidal co-categories.) We de-
fine the oco-category of large monoidal co-categories J\/[onéa\tOo similarly.

o If (M,®,1) is a symmetric monoidal category in the ordinary sense, we
write M® — Fin, for the associated symmetric monoidal co-category [Lurl?,
Construction 2.0.0.1].

1. STATING THE MAIN RESULT

Let € be a cocomplete closed symmetric monoidal category. A symmetric
sequence in C is a functor X: FB — €. Such a functor consists of a sequence
(X (0),X (1),...) of objects in €, where each X (n) carries a 3,-action, hence the
name. Given two symmetric sequences X,Y in €, their composition product
X oY is defined by the formula'

XoY (A= ColimfeAﬁBGFBXFinF;nA/ <®X (f*l (b))) ®Y (B).
beB
The category ¥Seq (€) = Fun (FB, ) of symmetric sequences is a monoidal category
with respect to o and the unit symmetric sequence (,1,0,0,...). Monoid objects
in this monoidal category are exactly (monochromatic) operads enriched in €.

I many classical literature, the composition product is written in the reverse order. In other
words, what we just defined as X oY is often denoted by Y o X. We follow [Hau22| in our
convention here.
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In this section, we review the oo-categorical enhancements of the composition
product monoidal structure, due to Brantner and Chu—Haugseng. We then state
the main result of this paper, which compares the two monoidal structures.

1.1. Brantner’s model. Branter’s model of composition product is based on the
following observation, found in Trimble’s note [Tri] and “Author’s Note” of [Kel05]
(there attributed to Carboni): The groupoid FB carries a symmetric monoidal struc-
ture, given by disjoint union of sets. This (and its opposite) is the free symmetric
monoidal category on a singleton 1. It follows that the symmetric monoidal cate-
gory Fun (FB, Set) of symmetric sequences with the and Day’s convolution product
% is the free cocomplete closed symmetric monoidal category generated by the unit
symmetric sequence ¥ = FB (1, —) [IK86, Theorem 5.1]. In analogy with ordinary
algebra, let us therefore write Set[¥] = Fun (FB, Set) for this symmetric monoidal
category. The universal property implies that the category Fun® (Set[%X], Set[X])
of cocontinuous symmetric monoidal functors Set[X] — Set[X] is equivalent Set[X] =
YSeq (Set), via evaluation at X € Set[X]. We then have:

Proposition 1.1. The categorical equivalence
evy: Fun®% (Set[X], Set[X]) = XSeq (Set)

can be enhanced to a monoidal equivalence, where the left-hand carries the monoidal
structure given by composition of symmetric monoidal functors, and the right-hand
stde carries the composition product monoidal structure.

Proof. Since the Yoneda embedding FB°? — Set[X] is symmetric monoidal, we have
FB (S, —) = X* for every finite set S € FB. Therefore, the co-Yoneda lemma gives
us an isomorphism

SeFB
F%“/ XX .F(9)

natural in F' € Set[X]. (A more suggestive notation for the right-hand side will be
Y s F(0) X, X¥".) Thus, if F,G: Set[X] — Set[X] are objects of Fun®" (Set[X], Set[X])
with images F, G € ¥.Seq (Set), then we have

evy (FoG) =F(G)

" </SeFB ey G(g))

SeFB
/ F*5.G(S)

>~ Fod.

1%

1%

These isomorphisms and the identity morphism evy (idSet[x]) = X enhances evy to
a monoidal functor. O

The goal of this subsection is to describe the oco-categorical generalization of this
story, due to Brantner.

Remark 1.2. As is clear from the above discussion, Brantner’s model lives in the
world of (oo, 2)-categories. In what follows, we will use co-bicategories as our
preferred model of (0o, 2)-categories. A brief summary of this model can be found
in Appendix A. We will also make a few reference to Lemma 3.5. No circularity
will result from these forward references.

To state the definition of Brantner’s composition product monoidal structure,
we need to introduce a bit of notation.
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Definition 1.3. A presentably symmetric monoidal co-category is a sym-
metric monoidal co-category C® satisfying the following pair of conditions:

e The oo-category € is presentable.

e The tensor bifunctor € x € — € preserves small colimits in each variable.

Definition 1.4. We define an oo-bicategory PréM,) to be the one associated with
(via Recollection A.10) the simplicial category whose:
e objects are the presentably symmetric monoidal co-categories; and
e whose hom-simplicial set from C® to D® is given by the full subcategory
Fun®’ (€, D) c Fun® (€, D) spanned by the symmetric monoidal functors
whose underlying functor ¢ — D preserves small colimits.

The underlying co-category of PréM? will be denoted by PrSM.

Notation 1.5. We denote the binary coproduct in PrSM by ®. More generally, if
B2« A® — C® are maps in PrSM, we denote the pushout by (B ®4 €)®. Note
that it exists by [Lurl7, Corollary 3.2.3.3] and [Lur09b, Theorem 5.5.3.18, Corollary
5.5.3.4, and Remark 5.5.3.9].

Remark 1.6. Pushouts in Pr8M satisfies the following (0o, 2)-universal property:
Given maps B® + A® — €% in Pr8M and an object 2% € Pr8M, the functor

0 : Fun®’ (B @, €,2) — Fun®* (B, 2) X Fun® L (A,2) Fun®" (€, 2)

is a categorical equivalence. To see this, it suffices to show that for every oo-
category X, the functor Fun (X, 6)~ is a homotopy equivalence. But we can identify
Fun (X, )~ with (Gpun(x Z)) g, which is a homotopy equivalence by the definition of
pushouts. (Here Fun (X, Z)® is defined as the fiber product Fun (X, Z%) X pun(ax Fin. )
Fin,.)

Notation 1.7. Let A® be a small symmetric monoidal co-category. According to
[Lurl7, Corollary 4.8.1.12], the oo-category Fun (A, 8) admits a presentably sym-
metric monoidal structure which is characterized by the property that the Yoneda
embedding A°P — Fun (A, 8) can be enhanced to a symmetric monoidal functor.
We let Fun (A, 8)* denote corresponding symmetric monoidal co-category.

If C® is a presentably symmetric monoidal co-category, we define another pre-
sentably symmetric monoidal co-category Fun (A, G)* and a symmetric monoidal
functor i4 e by the pushout (or coproduct)

8% —— Fun(A,8)*

I

G® T(’> Fun(A, @)*
(Note that the underlying co-category of Fun (A, G)* is equivalent to Fun (A, C) by
Lemma 3.5, justifying the notation.)
Notation 1.8. Given a presentably symmetric monoidal co-category €%, we write
C[X]* = Fun (FB,€)*,

and let X € C[X] denote the image of the unit symmetric sequence X = (9,1,0,0,...)
Fun (FB,8). We also write i¢ = ipger ¢ for the symmetric monoidal functor €% —

Clx]*.

Remark 1.9. In the situation of Notation 1.8, Lemma 3.5 shows that an object of
C[X] can informally be written as a sequence (X (0),X (1),...) of objects in C,
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where each X (n) carries a ¥,-action. The functor iec of Notation 1.8 is then given
by the formula

ic (C)=(C,0,0,...).
We can now define Brantner’s composition product monoidal structure.

Definition 1.10. Let C® be a presentably symmetric monoidal co-category. We de-
fine a monoidal co-category ¥Seqp (€)° as the endomorphism monoidal co-category

c®/
(Definition A.41) of the co-bicategory CAlgg) = (fPrSM(Q)) (Example A.4) at
C[X]*. In symbols, we have
YSeqp (€)° = &nd

CAlgEf) (G[f{]*) o

Remark 1.11. The assignment €% — ¥Seqg (€)° can be assembled into a functor
SSeqp (—)° : PrSM — MonCato
as follows: Define an co-bicategory f FréM CAlgEQ) by the pullback

CAlgl? —— Fun®([1], PrsM?)

PréM —— 5 Pr&MP),

ffPrSJv[

By Example A.20 and Remark 1.6, the functor 7 is a cocartesian fibration (Defini-
tion A.17). We let CAlg(®: Pr8M — BiCat,, denote the straightening (Theorem
A.22) of 7.

Since 8% € PrSM is initial, there is an (essentially unique) cocartesian section o
of m which carries 8* to the inclusion

is: 8% < S[X]*.
Via straightening, the section o lifts the functor CAlgSQ) to a functor
PréM — (BiCatoo) g/ -

Composing this with the functor €nd: (BiCats);,, — MonCats of Definition
A .41, we get the desired functor

YSeqp (—)° @ Pr8M — MonCato.
The notation XSeqg (C) is justified by the following proposition:

Proposition 1.12. Let C® be a presentably symmetric monoidal co-category. Then
Clx* ¢ CAlgg) is freely generated by X in the following sense: For every D® €
CAlgg), the evaluation at X induces a categorical equivalence®
cAlg? (€x], D) = D.
In particular, the evaluation at X gives a categorical equivalence
¥Seqp (€) = C[X] ~ Fun (FB, €).
Proof. Remark 1.6 and Proposition A.16 gives an equivalence
CAlgY (€[x],D) = Fun® (8[%], D),
so we are reduced to the case where C® = 8§*. The universal property of the

Day convolution symmetric monoidal structure (which follows from the discussion

2Here CAlgg) (€[X],D) is a shorthand for CAlg(g) (e[x]*, %)
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in [Lurl?7, Corollary 4.8.1.12] and an argument similar to Remark 1.6) gives an
equivalence

Fun®* (8[%], D) = Fun® (FB, D).
Since FB°PM = FBM can be identified with the symmetric monoidal envelope (Con-

struction 5.10) of the trivial co-operad Triv® [Lurl7, Example 2.1.1.20], we further
have an equivalence

Fun® (FB, D) = Alg,, (D).
By [Lurl7, Example 2.1.3.5], the evaluation at the unique object of Triv® gives an
equivalence

AlgTriv (D)

D.
The resulting equivalence Fun®* (8[%], D) D is given by the evaluation at X,
and the claim follows. O

e fe

1.2. Haugseng’s model. We now turn to Haugseng’s model of composition prod-
uct. In contrast to Brantner’s model, Haugseng’s model is characterized by a uni-
versal property of maps into it. To state it, we must introduce a bit of notation.

Definition 1.13. [Hau22, Definition 4.1.1] We define a category Ay of forests as
follows:
(1) Tts objects are the finite sequences Sy — --- — S, of maps of finite sets in
Fin, where n > 0. We think of such a sequence as a forest whose edges are
the elements of [];.,S; and whose vertices are the elements of [],, S;.
(2) A morphism (Sg — --- — S,) = (Tp — --- — Ty,) is given by a morphism
¢: [n] — [m] of A and injective set maps {u;: S; — Ty(;) Jo<i<n such that,
for each 0 < ¢ < j < n, the square

S; ——

L

Ty — To(y)
is commutative and cartesian.

In the theory of operads, the category Ag” roughly plays the role that A°P plays
for categories. Informally, the map ¢ decomposes T, into a bunch of subtrees (with
boundaries in Ty(;y and Ty(;11)), and the maps u; carry each of these subtrees into
subcorollas of S, with matching boundaries or discard it entirely.

Definition 1.14. We define the “vertex functor” V: Ag” — Fin, by the formula

V(So— = Sp) = <H5i> ,
>0 /.

where (—), : Fin — Fin, adds a disjoint basepoint. Given a morphism (¢, {u;};) as
in Definition 1.13, the map (]_[j>0 Tj)* — (I;50 Si), is defined as follows: Let
0 <i<mnands € S;. Then the preimage of s is (]_[¢(j_1)<k§¢(j) Tk)m(s), where
the subscript indicates the preimage over u; (s) € T

Definition 1.15. [Hau22, Notation 4.2.7] Let O® — A°P be a non-symmetric oo-
operad. A morphism of O% x acr ApP is called operadic inert if its image in O%
is inert. Given an oo-operad €% — Fin,, we write Alg%pgx pon AP (@) for the full
subcategory of Fungin, (0% X ace Ag”, €®) spanned by the maps carrying operadic
inert maps to inert maps of €%,
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With these definitions, we can state the universal property of Haugseng’s com-
position product monoidal structure.

Theorem 1.16. [Hau22, Corollary 4.2.9] Let €% be a symmetric monoidal co-
category compatible with colimits indexed by small co-groupoids. There is a monoidal
oo-category YSeqy (€)° characterized by the equivalence

Alg%p@;ix pow AP (@) ~ Algy (XSeqy (€))

natural in the non-symmetric oo-operad O%. Moreover:

(1) The construction is functorial in the variable €° and symmetric monoidal
functors preserving colimits indexed by oo-groupoids.

(2) There is an equivalence XSeqy (€) ~ Fun (FB, C) which is functorial in the
sense of (1).

1.3. Main Result. We can now state the main result of this paper.

Theorem 1.17. There is an equivalence of monoidal co-categories
YSeqp (€)° ~ SSeqy (€)°
natural in C® € Pr&M.

In the next two sections (Sections 2 and 3), we establish basic results on monoidal
localizations and composition product and Day’s convolution product in the model-
categorical setting. We then take a closer look at Brantner and Haugseng’s models
in the ensuing sections (Sections 4 and 5). The proof of Theorem 1.17 will be given
in Section 6.

2. REVIEW ON LOCALIZATION

In this section, we recall a few key results and constructions on localization of
symmetric or non-symmetric monoidal categories. They will be used in an essential
way in the rest of the paper.

First we recall monoidal relative co-categories and their localization.

Definition 2.1. |Araa] A monoidal relative oo-category is a pair (M®,'W),
where M® is a monoidal co-category and W C M is a subcategory containing all
equivalences and are stable under tensor products. Morphisms in ‘W are called
weak equivalences. When W is clear from the context, we often drop it from the
notation and say that M® is a monoidal relative co-category.
We let Monﬂ%el(?atgj) denote the co-bicategory of monoidal relative co-category;
formally, it is the scaled nerve of the sSet™-enriched category whose:
e Objects are monoidal relative co-categories.
e Mapping object between a pair of objects C®, D® is given by the full sub-
category Fun®™! (€, D) ¢ Fun® (€, D) spanned by the monoidal functors
that preserve weak equivalences (with equivalences marked).

We think of Mon@atg) as a full sub co-bicategory of Monﬂ%el@atg) via the inclu-
sion €% — (€® €=). The underlying co-category of MonfReIGatg) is denoted by
MonRelCat .

We define symmetric monoidal relative oco-categories and the associated oco-
bicategory SM(ReI(?atg) similarly.

Construction 2.2. Let (M®, W) be a monoidal relative co-category. The monoidal
localization of (M® ‘W) is a symmetric monoidal co-category N® equipped with
a symmetric monoidal functor noye wy: M® — N¥ satisfying the following equiv-
alent conditions:
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(1) The underlying functor M — N is a localization at W.
(2) For every symmetric monoidal co-category P, the functor

n*: Fun® (N, P) — Fun® (M, P)

is fully faithful, and its essential image consists of the functors M — P
carrying weak equivalences to equivalences.

(The equivalence of these conditions are proved in [Lurl7, Proposition 4.1.7.4].) In
this situation, we write N® = M[W=1]®.

By [BB24, Corollary A.2.18|, the assignment (M®, W) — M[W~1® can be
turned into a functor

L: MonRelCat?) — MonCat?),

and the maps 7n(ye ) assemble to a natural transformation 7: id = ¢ o L. For
an explicit construction, see Lemma 4.10 below. There is a parallel construction in
the symmetric monoidal setting too, which we leave to the reader.

Remark 2.3. By definition, localization of monoidal relative co-categories are unique
up to equivalence. A stronger uniqueness is also true: Let € be an oco-category, and
let F: € — MonRelCaty be a functor denoted by C' — (M%,Wc). Suppose
we are given another functor N®: € — MonCat,, and a natural transformation
a: ME — NZ of functors € — MonCaty,. If for each C € €, the map a¢ exhibits
N% as a monoidal localization of M% at W, then there is a natural equivalence

L (M;@, W.) ~ N¥®
of functors € — MonCats,. This follows from the fact that the inclusion
Fun (€, MonCats ) < Fun (€, MonRelCato )

has a left adjoint given by postcomposition by L and with unit induced by 7.
(Alternatively, this follows from [Ram23, Proposition A.11].) In other words, the
assignment C' +— M%[WEI] can be exteneded to a functor in an essentially unique
way. Because of this, we typically denote the functor L (M, W,) by MZ[W,1].

We are particularly interested in the localization of symmetric monoidal model
categories.

Definition 2.4. A symmetric monoidal model category is a model category
M equipped with a closed symmetric monoidal structure, subject to the following
pair of conditions:

e (Cofibrant unit) The monoidal unit is cofibrant.
e (Pushout-product) For every pair of cofibrations i: A — B and j: X —
Y in M, their pushout-product

i®j: (A®Y)lagx (B®X) > BRY
is a cofibration. If further 7 is a trivial cofibration, so is i®j.

We write TractSMMC for the category of tractable symmetric monoidal model cate-
gories and left Quillen symmetric monoidal functors. (Recall that a model category
is tractable if it is locally presentable as a category and has a generating sets of
cofibrations and trivial cofibrations with cofibrant domains.)

Let M be a tractable symmetric monoidal model category. The definition of
symmetric monoidal model categories ensures that the full subcategory Mo C
M of cofibrant objects inherits a symmetric monoidal structure from M and is a
relative symmetric monoidal category. The underlying symmetric monoidal
oo-category of M, denoted by M | is the symmetric monoidal localization of the
symmetric monoidal relative category Mo at weak equivalences.
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Construction 2.2 gives us a functor
TractSMMC® — PrsM® | M — ME .
The main theorem of [Arab] asserts:
Theorem 2.5. The functor
(—)Z : TractSMMC — Pr$M

18 a localization.

3. COMPOSITION PRODUCT AND DAY CONVOLUTION FROM
MODEL-CATEGORICAL VIEWPOINT

In this section, we study composition product and Day convolution from a model-
categorical perspective. In Subsection 3.1, we will show that Day’s convolution
product models oco-categorical convolution product in the model-categorical set-
ting. In Subsection 3.2, we show that composition product of cofibrant symmetric
sequences in a model category behaves well homotopically.

Remark 3.1. For the remainder of this paper, we will adopt the following convention
on functor categories of model categories: Let M be a cofibrantly generated model
category, and let J be a small category. We will always equip Fun (J,M) with
the projective model structure, whose fibrations and weak equivalences are defined
pointwise [Hir03, Theorem 11.6.1].

Recall that if I and J are generating sets of cofibrations of M, then the maps
{J@,—)f|fel}and {J(i,—)®g|g € J} generate the cofibrations and trivial
cofibrations of the projective model structure. (Here ® denotes tensor by sets.)

3.1. Day convolution. Let M be a combinatorial symmetric monoidal model cat-
egory. Given a small symmetric monoidal category A, the category Fun (A, M)
carries a symmetric monoidal structure, given by the ordinary (1-categorical) Day
convolution product ;. The goal of this subsection is to prove the following
proposition, which says that the Day convolution makes Fun (A, M) into a sym-
metric monoidal model category whose underlying symmetric monoidal co-category
is what we would expect:

Proposition 3.2. Let M be a combinatorial symmetric monoidal model category
with a cofibrant unit, and let A be a small symmetric monoidal category. FEquip
Fun (A, M) with the projective model structure and Day’s convolution product.

(1) The category Fun (A, M) is a symmetric monoidal model category with cofi-
brant unat.
(2) There is a coproduct cone

M2 — Fun (A, M)** <& Fun (4, 8)*
in Pr8M, where the left arrow is induced by the symmetric monoidal functor
M — Fun(A,M), M — A(1,—)- M.

(8) For every left Quillen symmetric monoidal functor M — N of combinato-
rial symmetric monoidal model categories, the square

ME s N®

l l

Fun(A, M)*1 —— Fun(A, N)X:

is cocartesian in PrSM.
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(4) We have an equivalence of symmetric monoidal co-categories
Fun (A, M)*' ~ Fun (4, My.)* .

Before turning to the proof of Proposition 3.2, let us prove one of its conse-
quences.

Corollary 3.3. Let C be a symmetric monoidal category such that C% is presentably
symmetric monoidal, and let A be a small symmetric monoidal category. There s
a coproduct cone

5 (1)),
_

C Fun (A, €)*" « Fun (A4,8)*

i Pr8M. In particular, we have an equivalence of symmetric monoidal co-categories
Fun (A, €)*" ~ Fun (A, )% .

Proof. We will apply Proposition 3.2 to the trivial model structure on €, whose weak
equivalences are the isomorphisms and and whose morphisms are all fibrations. The
only nontrivial part is that this model structure is combinatorial.

To see the trivial model structure is combinatorial, take a small regular cardinal
% such that C is k-presentable, and let S be a set of representatives of isomorphism
classes of k-compact objects in €. We then set ] = {A — B}apes and J =
{ida}aes. We claim that I and J generate the classes of cofibrations and trivial
cofibrations of €.

It is obvious that every morphism of € has the right lifting property for the
maps in J, and that every isomorphism has the right lifting property for the maps
in I. It will therefore suffice to show that if a map f: X — Y has the right
lifting property for the maps in I, then f is an isomorphism. For each A € S,
the right lifting property for the maps § —+ A and AIl A — A implies that the
map f.: C(4,X) = C(A,Y) is bijective. Since every object of € is a colimit of
objects in S, it follows that this map is bijective for any object A € €. Thus f is
an isomorphism, as required. (I

We now turn to the proof Proposition 3.2, which needs a few preliminaries.

For the next lemma, recall from [Lur09b, Corollary 5.5.3.4 and Theorem 5.5.3.18§]
that the oo-category Prl of presentable co-categories and left adjoints has small
colimits.

Lemma 3.4. The co-category Prl is generated under small colimits by the presheaves
on small co-categories.

Proof. Recall that every presentable co-category has the form P (A) [S™1], where A
is a small co-category and S is a small set of morphisms of P (A). This localization
can be written as a pushout (in Pr¥) of the span

CP(H[O]><—‘P [T Low,

S fes

where f is the unique colimit preserving functor determined by the tautological
functor [[;cg[1] = P (A). The claim follows. O

Lemma 3.5. Let C be a presentable co-category, and let A be a small co-category.
Consider the functor Fun (A°P 8) x € — Fun (A°P, C) adjoint to the composite

A% x Fun (AP, 8) x € > 8xC 5 8®C~C

The functor ® induces an equivalence ae: C® Fun (A°P,8) = Fun (A°P, €) in Prl.
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Proof. We first observe that the functor Fun (A°P,—) : Prf — Prl preserves
small colimits. Indeed, using the equivalence Prl ~ (fPrR)Op of [Lur09b, Corol-
lary 5.5.3.4], we only have to show that the functor Fun (A°P,—): Prff — Prft
preserves small limits. This is immediate from [Lur09b, Theorem 5.5.3.18].

Now since Prl is closed symmetric monoidal [Lur17, Remark 4.8.1.18], the func-
tor P (A) ® —: Prl — Prk also preserves small colimits. Therefore, by Lemma 3.4,
it will suffice to show that ae is an equivalence when € = P (B) for some small
oo-category B.

Let D be a presentable co-category. Precomposing the Yoneda embeddings, we
get equivalences

Fun® (P (A) ® P (B), D) = Fun (A x B, D) <= Fun (P (A x B),D).

This gives us an equivalence P (A)@P (B) = P (A x B). Unwinding the definitions,
this equivalence is exactly the functor ap(p), and we are done. Il

Lemma 3.6. Let C® be a symmetric monoidal oco-category, and let X Lz8y
be morphisms of commutative algebra objects of C®. The following conditions are
equivalent:

(1) The maps f and g exhibits Z as a coproduct of X andY in CAlg (C).
(2) The composite

UX)oU ) X% v2yeUu2) LU 2)
is an equivalence in C, where U : CAlg (€) — € denotes the forgetful functor
and p denotes the multiplication of Z.

Proof. Recall that the symmetric monoidal oco-category CAlg (G)® is cocartesian
[Lurl?, Proposition 3.2.4.3]. Therefore, by [Lurl7, Proposition 2.4.3.16], we can
lift Z € CAlg(€) in an essentially unique way to a commutative algebra object Z
in CAlg (€)®. Using [Lurl7, Remark 2.4.3.4], the multiplication map

ZRL— 4

of Z can be identified with the codiagonal map Z II Z — Z. So the composite

Xovy i z0z4% 7
is just the map induced by the universal property of coproducts and the maps f and
g. It follows that condition (1) is equivalent to the condition that po (f ® g) be an
equivalence. Since U is conservative and symmetric monoidal [Lurl7, Proposition
3.2.4.3], this is equivalent to condition (2). The proof is now complete. (I

We now arrive at the proof of Proposition 3.2.

Proof of Proposition 3.2. Part (1) is well-known (see, e.g., [BB17, Theorem 4.1]),
but it is difficult to find a reference stating this in its exact form, so we record
a proof anyway. Recall from Remark 3.1 that if I and J are generating sets of
cofibrations and trivial cofibrations of M, then the sets {A (a,—) - i}qca,icr and
{A (a,—)-j}aca, jes generate the cofibrations and trivial cofibrations of Fun (A, M).
Using the isomorphism in Fun (A, M)

(A(a,=) M)*x(A(b,—) - N)2A(a®b,—)- (M®N),

natural in M, N € M, we deduce that the projective model structure satisfies
the pushout-product axiom. Also, the unit object A (14,—) - 1n for the Day
convolution product is cofibrant, because 1y is cofibrant. This proves (1).
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For part (2), suppose first that there is an equivalence of symmetric monoidal
oo-categories 8% ~ M& . The Yoneda embedding
A% — Fun (A,M),
a— Aa,—)-1
is symmetric monoidal and takes values in the full subcategory of cofibrant objects.
Thus, composing it with the symmetric monoidal localization Fun (A,M)(’;lf —
Fun (A,M)o*ol, we obtain a symmetric monoidal functor A°® — Fun (A,M)O*Ol.
The universal property of the Day convolution product on Fun (A, 8) [Lurl?, § 4.8]
now gives a symmetric monoidal functor F indicated by the dashed arrow:

Fun(A, 8)* -------- LA > Fun(A, M)*.

We wish to show that F'is an equivalence. Since it is symmetric monoidal, it suffices
to show that F' induces an equivalence between the underlying oco-categories. Using
[Cis19, Theorem 7.9.8], we can identify Fun (A, M)_ with Fun (A, Ms). Under
this identification, the dashed arrow is given by postcomposing the equivalence
8 >~ M. In particular, it is an equivalence, as desired.

For the general case, use [Arab, Corollary ??7] to find a symmetric monoidal
left Quillen functor Set™® — M, where Set™® denotes the tractable symmet-
ric monoidal model category of symmetric cubical sets. This gives us symmetric
monoidal left Quillen functors

M % Fun (4, M) < Fun (A, SetD‘é") ,
where ¢ is given by ¢ (M) = A(1,—) - M. Localizing at weak equivalences, we
obtain symmetric monoidal functors

’ ’ *
M2 25 Fun (A, M)*! < Fun (A,SetDz ) "

oo

op\ X1
From the argument in the previous paragraph, we know that Fun (A, SetDEp)

o0
is equivalent to Fun (A,S)*. Therefore, it suffices to show that ¢’ and ¢’ form a
coproduct cone in PréM.

According to Lemma 3.6, we must show that the composite

0: Moo x Fun (A, Set™ ) 220, Fun (4, M), x Fun (4, M),

oo

D102y pun (A,M)

exhibits Fun (A, M) __ as a tensor product of M and Fun (.A, Set™s’ in Prk.
Using [Cis19, Theorem 7.9.8|, we can identify Fun (A, M) __ with Fun (A, ﬁoo), and
Fun (A, SetD%p) with Fun (A, 8). Under these identifications, the map 6 is adjoint
to the compositeOO
M. x Fun (A, 8) x A 259 M. x 8
- My ®38
= Moo

So the claim follows from Lemma 3.5.
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Part (3) follows from the argument in part (2) and the pasting law of pushouts
[Lur09b, Lemma 4.4.2.1]. Part (4) is a consequence of (3). The proof is now
complete. O

3.2. Composition Product. Let M be a symmetric monoidal model category.
The composition product monoidal structure on ~Seq (M) is generally not closed,
because composition product may not preserve small colimits in the first variable.
In particular, ¥Seq (M) is generally not a monoidal model category. The goal of this
subsection is to show that the composition product still behaves homotopically for
cofibrant symmetric sequences. More precisely, we prove the following proposition:

Proposition 3.7. Let M be a cofibrantly generated symmetric monoidal model
category that admits generating sets of cofibrations and trivial cofibrations whose
domains are cofibrant. Then:

(1) For every projectively cofibrant symmetric sequence X, the functor
X o —: ¥Seq (M) — XSeq (M)

is left Quillen.
(2) For every projectively cofibrant symmetric sequence Y, the functor

—oY: ¥Seq(M) — XSeq (M)
preserves weak equivalences of projectively cofibrant objects.
For the proof of Proposition 3.7, we need some preliminaries.

Lemma 3.8. Let M be a symmetric monoidal model category, and let {f;: X; —
Yi}iz1,2 be cofibrations of M. If X1 and X5 are cofibrant, the map

A®f: X1 Xe—-Y10Y,;
is a cofibration. If further one of f1 or fo is a weak equivalence, so is f1 ® fo.
Proof. We will show that f; ® fs is a cofibration; the latter claim can be proved
similarly. We can factor f; ® f2 as

X190 X 22 v 0 x, M9y 0 v,

The map f1 ® id is a cofibration by the pushout-product axiom (applied to the
cofibrations f1 and ) — X5). Likewise, id ® f> is a cofibration. Hence fi ® fs is the
composite of two cofibrations, and we are done. [l

To state our next lemma, we need to introduce some notation.

Notation 3.9. For each A € FB, we let 34 denote the automorphism group of A,
and write BY. 4 C FB for the full subcategory spanned by A.

It will also be useful to have the following alternative notation for BY. 4:

Notation 3.10. For each r > 0, we let FB (r) C FB denote the full subgroupoid
spanned by the (unique) object of cardinality r.

Lemma 3.11. Let M be a tractable symmetric monoidal model category, let X be
a projectively cofibrant symmetric sequence in M, and let A € FB be a finite set.
For each r > 0, the functor

F,: ¥Seq(M) — Fun (BX 4, M)

Y > colimy. A, BeFB(r) xpinFina, <®X (1 (b))> ®Y (B)

beB
is left Quillen.
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Proof. Since M is tractable, there are generating sets I and J of cofibrations and
trivial cofibrations with cofibrant domains. We define sets Iy, and Jx of morphisms
of ¥Seq (M) by

Is ={Sa|SeFB,acl},
Iy ={Sa|SeFBacJ},

where Sy = FB(S,—) ® — : M — XSeq (M) denotes the left adjoint to the evalu-
ation at S. As we saw in Remark 3.1, the sets Iy, and Jy form generating sets of
cofibrations and trivial cofibrations of ¥Seq (M). Since F,. preserves small colimits,
it suffices to show that F;. carries morphisms in Iy, to cofibrations and morphisms
in Jx, to trivial cofibrations. In what follows, we will focus on the case of Is; the
proof for Jy can be treated similarly.

Let S be a finite set, and let @ : P — P’ be a morphism in I. We wish to show
that the morphism F, (S («)) is a cofibration. If the cardinality of S is not equal to
r, then F,. (S («)) is an isomorphism, and we are done. If S has exactly r elements,
then we can identify F,. (S («)) with the map

11 <®X (f! (s))> oP— ] <®X (f7! (s))> ® P,
fEFin(A,5) \s€S fEFin(A,S) \s€S
Therefore, it suffices to show that the functor
®: 2Seq (M)® x M — Fun (BX 4, M),
(X)ees - N) = T <® X (7 (s))> ®N
fEFin(A,S) \s€s

carries cofibrations to cofibrations. As before, we can check this on the level of
generating cofibrations. In other words, it suffices to show that, for each collection
(Ts),cg of objects in FB, the composite

(Hses(Ts)!)XidM
e

U: MS x M %Seq (M)® x M 25 Fun (BS 4, M)

preserves cofibrations. Unwinding the definitions, the functor ¥ is given by

W (My,...,M,,N)=FB <HTS,A> ® <<®M> ®N>.

ses ses
Since FB (Hses TS,A) is a free X 4-set, the functor FB (Hses TS,A) ®—:M —
Fun (BX 4, M) is left Quillen. Thus, we are reduced to showing that the functor
&X): M x MM

carries cofibrations of cofibrant objects to cofibrations. But this is the content of
Lemma 3.8, and we are done. (I

Lemma 3.12. Let M be a tractable symmetric monoidal model category, and let
X and Y be projectively cofibrant symmetric sequence in M. For each finite set A
and each v > 0, the colimit cone for

colimy: A BeFBxpFina, <®X (r (b))> ®Y (B)

beB

is a homotopy colimit cone (i.e., its image in M[weq~'] is a colimit cone). More-
over, this colimit is cofibrant.
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Proof. The final claim is a consequence of Lemma 3.11, because cofibrant objects
are stable under coproducts. For the former, let Gx y : FB Xfin Fing, — M denote
the diagram

(f: A= B) <®X(f—1<b>)> ©Y (B),

beB
and let p: FB XFin FinA/ — FB denote the projection. The left Kan extension
Lan, Gx,y is given by the formula

Lan, Gxy (B) = H ®X (71 ()oY (B).

fEFin(A,B) beB

Since coproducts of cofibrant objects are homotopy coproducts, [Lur25, Tag 02ZM]
shows that this is a homotopy left Kan extension. (Note that X and Y are object-
wise cofibrant, being projectively cofibrant). By the transitivity of Kan extensions,
we have colimrg , ;= colimgg o Lan,. Therefore, it suffices to show that the colimit
cone for colimrg Lan, G'x,y is a homotopy colimit diagram. We prove this by show-
ing that Lan, Gx y € Fun (FB,M) is projectively cofibrant. In fact, we will prove
more strongly that the functor

¥Seq (M) — Fun (FB,M),
Y — (Lanp G)Qy)

is left Quillen.
Let B € FB be an arbitrary object. We must show that the functor

®: ¥Seq (M) — Fun (BXp,M),
v JI QX)) ey (B

fEFin(A,B) beB

is left Quillen. By Remark 3.1, it suffices to show that for each cofibration (resp.
trivial cofibration) w: M — M’ in M and each S € FB, the map ® (FB (S, —) ® )
is a cofibration (resp. trivial cofibration). We will focus on the case of cofibrations,
because the case of trivial cofibrations can be dealt with similarly.

If |S| # |BJ, then ® (FB(S,—) ® «) is an isomorphism, and we are done. If
|S| = |B], let I1 (A, B) denote the set of connected components of BX.p xFi, Finy.
For each 7 € TI (A, B), we will write Fin™ (4, B) C Fin(A, B) for the set of maps
A — B lying in . We also choose a representative f of each m € II (A, B) and set
Xz =Q®ypep X (f71(b)). We then have a ¥ p-equivariant isomorphism

®(FB(S,—)@M)= [ ((Fin™(4,B) x FB(S,B)) @ X ® M)
well(A,B)
natural in M. Since the Xp-set Fin™ (4, B) x FB (S, B) is free, this isomorphism
tells us that ® (FB (S, —) ® «) can be identified with the image of a cofibration of
M under the left Kan extension functor M — Fun (BXp, M). Since the latter is a
left Quillen functor, we have shown that ® (FB (S, —) ® «), as desired. O

We now arrive at the proof of Proposition 3.7.

Proof of Proposition 3.7. For (1), we must show that, for each finite set A, the
composite

F: $Seq (M) X255 %Seq (M) 22O oy (BS 4, M)
is left Quillen. This follows from Lemma 3.11, because F' is the coproduct of the
functors {F} },>0. Part (2) follows from 3.12, and we are done. O
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4. CLOSER LOOK AT BRANTNER’S MODEL

The goal of this section is to characterize Brantner’s model by a universal prop-
erty. As we saw in Proposition 3.7, for every tractable symmetric monoidal model
category M, the full subcategory ¥Seq (M)_ C XSeq (M) of projectively cofi-
brant objects is a monoidal category itself, and its tensor product preserves weak
equivalences in each variable. In particular, it admits a monoidal localization. Our
main theorem asserts that Brantner’s model is naturally equivalent to this monoidal
localization:

Theorem 4.1. There is a natural equivalence
BSeq (M) of [weq '] = BSeq (M)
of functors TractSMMC — Mon(f/a\too.
The remainder of this section is devoted to the proof of Theorem 4.1.

Notation 4.2. Let M be a combinatorial symmetric monoidal model category.
We write M[X] = Fun (FB, M), and write % for the (ordinary) Day convolution
product in M[X]. We also write X = (0,1,0,0,...) € M[X] for the unit symmetric
sequence, and ipp: M — MIX] for the functor M — (M,0,0,...). (This set of
notation is justified by Corollary 3.3.)

Definition 4.3. We let TractSMMCy C TractSMMC denote the full subcategory
spanned by the objects M which admits ezactly one initial object ().

Remark 4.4. Here is the motivation for Definition 4.3. In the rest of this section,
we will frequently be considering diagrams of the form

M—% N

i [ Jim

M[X] —— N[,

where F is a left Quillen symmetric monoidal functor and i, in are defined in
Notation 1.8. The diagram may not commute on the nose, but it does when N has
only one initial object.

Remark 4.5. Theorem 2.5 remains valid if we replace TractSMMC by TractSMMCj.
Indeed, the argument of [Arab, ?7?] shows that the (2, 1)-categorical enhancements
of TractSMMCy and TractSMMC are localizations of TractSMMC and TractSMMCy,
and these (2, 1)-categorical enhancements are equivalent. Since the maps inverted
by these localizations are contained in the class of symmetric monoidal left Quillen
equivalences, this implies that the inclusion TractSMMCy — TractSMMC induces
an equivalence upon localizing at symmetric monoidal left Quillen equivalences.

Construction 4.6. The category TractSMMCy admits a natural 2-categorical en-
hancement TractSMI\/ICé)Q). Explicitly, given a pair of objects M and N, the map-
ping categories from M to N are given by the full subcategory Fun® L@ (M,N) C
Fun® (M, N) of left Quillen symmetric monoidal functors.

If M and N are equipped with a left Quillen symmetric monoidal functors
F: A —> M and G: A — N, we define another category Funfi’/LQ (M, N) by the
(strict) pullback

Funy/?(M, N) —— Fun®"?(M, N)

! |

{¥} ————— Fun® LA N).
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We will often consider the category Fun% /LQ (M, N) when F is injective on objects

and morphisms; in this case, the above square is homotopy cartesian.

Proposition 4.7. For every morphism i: M — N in TractSMMCy, the evaluation
at the unit symmetric sequence X € M[X] induces a categorical equivalence

6: Fungy? (M[X],N) = Neor.

Proof. Using Proposition 1.12 and Corollary 3.3, we deduce that the evaluation at
X gives an equivalence of categories

0': Funy;; (M[¥],N) = N.

Therefore, it suffices to show that a functor F' € Fun M/ L (M[%],N) is left Quillen

if and only if 8’ (F') is cofibrant.

Necessity is obvious, because E is cofibrant. For sufficiency, suppose that 6’ (F')
is cofibrant. We must show that F preserves cofibrations and trivial cofibrations.
We will show that it preserves cofibrations; the argument for trivial cofibrations will
be similar. Recall from Remark 3.1 that the class of cofibrations of Fun (FB, M) is
generated by the maps of the form

f:FB(S,—)-M — FB(S,—) - M,

where S € FB is a finite set and M — M’ is a cofibration of M. We can rewrite f
as

X5 wing (M) — %5 wing (M)
Since F' is symmetric monoidal and is compatible with the restrictions to M, the
morphism F (f) can be identified with the map

FX)* @i(M) = F X @i(M).

This is a cofibration because ¢ is left Quillen and 6’ (F) = F(X) is cofibrant.
Hence F' carries generating cofibrations to cofibrations. It follows that I’ carries all
cofibrations to cofibrations, as claimed. O

Notation 4.8. We write:
° Monfa\t for the category of large monoidal categories and monoidal functors;
e BiCat for the category of large bicategories;
e B: MonCat < BiCat for the inclusion; and
) Bleatoo for the co-category of large oo-bicategories.

We write fTraCtSMMC” BYSeq (—).
uct

for the full sub oco-bicategory of the fiber prod-

cof

Fun™ ([1], TractSI\/IMCé)Q)) x TractSMMC,

Fun({O},TractSMMCéZ))

spanned by the objects {int: M — M[X]}MeTractsMmc, -
Notation 4.8 is justified by the following proposition:

Proposition 4.9. Let p: fTraCtSMMCw BXSeq ().
tation 4.8.

(1) For every map F: M — N in TractSMMCy, the square

i Jin

M(x] —— N[x]

— TractSMMCy be as in No-

cof

18 p-cocartesian.
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(2) The functor p is a cocartesian fibration of co-bicategories which straightens
to the composite

(ZSQQ(_)cof’o)
-

®: TractSMMC, MonCat = BiCat — BiCats..

Proof. We start with (1). Let X denote the full sub 2-category of

X = 2 Fun ([1], TractSMlvlcéf)) X ) TractSMMCy

2 Fun ({O},TractSMMC((f)

spanned by the objects {int: M — M[X]}MmeTractsmmc,, where 2Fun (—, —) de-
notes the category of 2-functors and 2-natural transformations (i.e., Cat-enriched
natural transformations). By part (2) of Proposition A.16, the functor X —
J TreetSMMS pyiSeq (—)oys is an equivalence. It will therefore suffice to show that
the square in the statement is cocartesian for the projection X — TractSMMCy.

Given a left Quillen symmetric monoidal functor G: P — Q, the mapping cate-
gory of X is given by

X (iom., G) = 11 Fung; 7 (M[%], Q).
M—>P6Fun®’LQ(M,P)
Thus, our goal is to show that, for each left Quillen symmetric monoidal functor
N — P, the map

Funy (N[2], Q) — Fun 7 (M[X], Q)

is an equivalence. This follows from Proposition 4.7, which identifies this map with
id: Qcof — Qcof~

We next turn to (2). Part (1) implies that p is a cocartesian fibration. To identify
its straightening, let [® — TractSMMC denote the bicategorical Grothendieck
construction (Variant A.25) of ®. Explicitly, objects of [ @ are the objects of
TractSMMCy, and the mapping categories are defined by

(fe)mm= T ssam,.

M—NeFun® L@ (M,N)

So a 1-morphism M — N is a pair (F, X), where F: M — N is a left Quillen
symmetric monoidal functor, and X is a projectively cofibrant symmetric sequence
in N. Composition of such are defined by

(G,Y)o (F,X) = (GF,Y o (F,X)).

2-morphisms are defined and composed in a similar way. By Variant A.25, it
suffices to produce a strictly unitary equivalence X —» | @ of bicategories. Such an
equivalence is obtained from Proposition 4.7 by arguing as in Proposition 1.1. [

Lemma 4.10. We can construct the symmetric monoidal localization functor L: SMfReIGatg) —
SMeat'?) and the natural transformation n = {(C®, W) — G[W_1]®}(e® W
of Construction 2.2 so that they satisfy the following properties:

yESMRelCatP

(1) L is the scaled nerve of an sSet™ -enriched functor.

(2) n is the scaled nerve of an sSet™ -enriched natural transformation.

(3) If (C®,We) — (D®, Wop) is a morphism of symmetric monoidal relative
categories such that C° — D€ s a monomorphism of simplicial sets, then
the map C(W5'1® — DIWH® is a monomorphism of simplicial sets.

Proof. The key ingredient is the enriched version of Quillen’s small object argu-
ment [Riel4, Theorem 13.2.1], which we now recall. Let Fin? denote the marked
simplicial set obtained from (the nerve of) Fin, by marking all of its morphisms.
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According to [Lurl7, Variant 2.1.4.13, Remark B.2.5], the category sSet}"Finm admits
a combinatorial sSet™-enriched model structure with the following properties:

e Its cofibrations are the monomorphisms; and
e Its fibrant objects are the symmetric monoidal co-categories with cocarte-
sian edges marked.

Now fix a generating set J of trivial cofibrations of sSetj‘Fin* , and choose a regular
cardinal x such that the domain and codomain of the maps in J are all k-compact.
We define a x-sequence id = Ly = L; = --- of enriched endofunctors of sSet}"Fin*
and enriched natural transformations inductively as follows: For each limit ordinal
A, we set Ly = colimy<y L. Assuming that L, has been defined for some a < k,
we define L,11 by the pushout

H(j: AjaB_j)eJ[Aija(X)] x Aj > La(X)

! l

;. AjaB_j)eJ[Aija(X)] X Bj —— Lay1(X),

where [—, —] denotes the mapping objects of the sSet™-enriched category sSetj‘Fin*.
We then set L, = colimg<, L, and write 7 : idsset%n* = L, for the resulting
enriched natural transformation. By construction, the components of 7, are trivial
cofibrations of sSet;rFin*, and L takes values in the full subcategory of fibrant ob-
jects. Moreover, L preserves monomorphisms because the functor [A, —] preserves
monomorphisms for all A € sSet;rFin*.

To relate this construction to the setting at hand, let X and Y denote the sSet™-
enriched categories defining SMRelCat'Z and SMeat'?. For each (C®, We) € X,
let €®We denote the marked simplicial set obtained from €% by marking the co-
cartesian edges and the equivalences in We. The assignment (C®, We) +— €®We
determines an enriched functor

X — sSet;rFin*.
In general, given a pair of objects (€%, We¢), (D®, Wp) € X the map
X ((C%, We), (D?, Wop)) — [€&We, DEWo]

is mot an isomorphism, but it is an isomorphism when (D® , Wqp) € Y (i.e., Wop
are the equivalences of D). Therefore, L,; restricts to a functor L: X — Y, and n
restricts to an enriched natural transformation n: idx = L. The desired functor
and natural transformation is given by taking the scaled nerve of L and 7. O

Proof of Theorem 4.1. By Remark 4.5, we may replace TractSMMC by TractSMMCy.
We will first construct a natural transformation 6: ¥Seq (—)° — £Seqz ((—),)° of
functors TractSMMCy — MonCat,,. Define a functor 7: TractSMMCyp — fTraCtSMMC” BXSeq (—)°
by
7(M) = (ip: M — M[X)).

By Proposition 4.9, 7 is a cocartesian section of the projection fTraCtSMMC” BY:Seq (—)° —

TractSMMCy. Postcompositon with the functor (—)% : TractSl\/II\/ICéf) — Prsm®
determines a functor

TractSMMCy Pr&M
F: / BXSeq (—)° %/ CAlg,
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Part (3) of Proposition 3.2 shows that F' preserves cocartesian edges. It follows
from that the diagram

fTractSMMC@ BZSeq(—)O F fTrSM CAlgSQ)

{ Ta
TractSMMCy T} PréM

commutes up to natural equivalence, where ¢ is the section defined in Remark 1.11.
By straightening, this gives rise to a natural transformation
0: ¥Seq (—)° — XSeqp ((—),)° -
To complete the proof, we must show that for each M € TractSMMCy, the map
On: XSeq (M) — ESeqp (Moo)
is a localization at weak equivalences. (See Remark 2.3.) For this, we will construct
the functor (—)% by using Lemma 4.10; this will ensure that M — Fun (FB, M)%,

is a monomorphism of simplicial sets for all M € TractSMMCy. By part (2) of
Proposition A.16, we can identify fng with the dashed arrow in the diagram

Fun%i/(M[X]M,M[X]OO) {m)2}

NG

FuIl@"LQ(M[x]v M/[:;:D

& J {im}
Fun® % (M[X] o, M[X] o) J Fun®* (Moo, M[X] )
Fun®"LQ(M[ff], M[x]) Fun®’LQ(M, M[X)),

where the front and back faces are defined by strict pullback (but which happen to
be homotopy pullback), and the slanted arrows of the bottom face is induced by
the functor sSett-enriched functor (—);8;. We now consider the following diagram:

Fung; @ (M[x], M[X]) -2 Fun$;” | (M[X]o, M[¥]oc)

T @ 1

Fun® L2 (MX], M[X]) — = Fun®"(M[X]oc, M[X].c)

| |

Fun®’r91(M[x]cof,M[:{]cof) _ L Fun®(M[:ﬂoo,M[:ﬂoo)

| |

Fun®’rel(FB,M[.'f]cof) % Fun®(L(FB),M[X]oo)

(nFun(Fm lnFB
€ Fun® (FB, M[X]wo)

Fun(FB, M)cof Fun(FB, M) .

NFun(FB,M) ¢

Here FB is regarded as a symmetric monoidal relative oco-category whose weak
equivalences are exactly the isomorphisms, the symmetric monoidal functor FB —
Fun (FB, M) carries the singleton 1 to the unit symmetric sequence (0,1,0,0,...),
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and ¢ is the evaluation at the singleton. The triangle commutes by the enriched nat-
urality of 1, and the remaining squares commute trivially. The vertical composites
are equivalences by Propositions 1.12 and 4.7. Therefore, we are reduced to show-
ing that the bottom horizontal arrow is a localization, which it is by construction.
The proof is now complete. (I

5. CLOSER LOOK AT HAUGSENG’S MODEL

In this section, we prove the following analog of Theorem 4.1 for Haugseng’s
composition product monoidal structure:

Theorem 5.1. There is a natural equivalence

BSeq (M)g,¢ [weq '] =~ BSeqy (Meo)®

cof
of functors TractSMMC — Moné\atoo.

The remainder of this section is devoted to the proof of Theorem 5.1.

Our proof will rely on an alternative construction of Haugseng’s model, which can
take arbitrary symmetric monoidal co-categories as its input and has co-operads as
its output. (In the 1-categorical setting, Ching developed a closely related idea was
developed in [Chil2].) To describe the construction, we need to introduce a bit of
notation.

Notation 5.2.

e We write ¥ C Fun ([1], A°P) for the full subcategory spanned by the in-
ert maps. The evaluation at 0 € [1] determines a cartesian fibration
evp: X — A°P whose fiber over [n] € A°P can be identified with the
poset of subintervals of [n] ordered by reverse inclusion.

e We then define a category ZAfgp and functors waep, TFin, by the commuta-
tive diagram

T AOD

saw Ty x o Aw
TFin. A%p — A°P
v
Fin,
whose top square is a pullback. We will think of SAg’ as lying over Fin,

and A°P by these maps.

We typically denote an object ¢: [n] = [m] of ¥ by [n] — [a, b], where a = ¢ (0)
and b = ¢ (m). With this notation, a typical object of YAZ" can be written as a
pair

([n] = [a,b],Sa — -+ — Sb)

where S, — --- — Sy is a sequence of morphsims in Fin.

Remark 5.3. The functor waor is a flat categorical fibration, since it is the composite
of a cocartesian fibration and a cartesian fibration.

Notation 5.4. Given a simplicial set X € sSet/aor and a map f: K — A°P of
simplicial sets, we write Xy = Xg = K X aop X.



EQUIVALENCE OF TWO APPROACHES TO ENRICHED oco-OPERADS 23

Definition 5.5. Let p: O® — Fin, be an co-operad. We define a functor ¥Seqy (0)° —
A°P to be the image of O® ¢ sSet/Fi,, under the composite

sSet /Fin, ﬁrF—”—% sSet/EA;p M) sSet/Aop.

In other words, ¥Seqy (9)° is characterized by the universal property

Funaer (K SSeqy (O)°) = Fungp, ((SAP), ,09).

Note that the projection E/S_&i{ (0)° — A°P is a categorical fibration by Remark

—~—

5.3. We write XSeqy; (0)° C BSeqy (0)° for the full subcategory spanned by the
functors {[n]} X acr LA’ — O carrying every morphism to an inert map.

Remark 5.6. In the situation of Definition 5.5, the functor
FB — {[1]} xaer ZARP, S— (S — 1)
induces a categorical equivalence
¥Seqy (O) = Fun (FB, 0).

Indeed, we can identify 3Seq (O) with the full subcategory of Fungin, ({[1]} x aer ZAZP, O%)
spanned by the functors that are p-right Kan extended from FB.

The next two propositions assert that XSeqy; (0)° is an co-operad characterized
by a certain universal property, and that the notation Seqy (—)° does not conflict
with Theorem 1.2.

Proposition 5.7. Letp: O%® — Fin, be an co-operad. The projection q: YSeqy (0)° —
A°P is a non-symmetric oco-operad. Moreover, if a: X — Y is a morphism of
YSeqy (0)° lying over an inert map «: [n] — [m], the following conditions are
equivalent:

(a) The morphism « is q-cocartesian.

(b) The functor (SAgR"), — 0% adjoint to o carries every morphism lying over

an inert map of Fin, to an inert map of 0.

Proposition 5.8. Let O% be an oo-operad, and let P® be a non-symmetric oo-
operad. The restriction along the diagonal map A°? — ¥ induces a categorical
equivalence

Algy, (3Seqy (0)) = Alg®Pd (0).

P& X Aaop A;fp

Proof of Proposition 5.7. Tt is tempting to use [Lurl7, Theorem B.4.2], but condi-
tion (5) of loc. cit. is not satisfied. So we must take a bit of a detour. We will say
that a morphism a of ¥Seq (O)° that lies over an inert map is special if it satisfies
condition (b) in the statement. We must prove the following:

(1) For each inert map « : [n] = [m] of A°P and object X € ¥Seq (O)Fn], there
is a special morphism « : X — Y lying over a.

(2) Every special morphism of XSeq (0)° is g-cocartesian.

(3) For each n > 0 and each collection of objects X1, ..., X,, € XSeq(0), there
is an object X € XSeq (0) that admits special maps {X — X;}1<i<n lying
over the inert maps {[n] — [ — 1,4] = [1]}1<i<n.

(4) Any collection of maps {X — X;}i<i<n as in (3) determines a g¢-limit
diagram in XSeq (O).

We start with (1). There is a retraction p: (SAR")  — (ZAEP)M carrying each
object (v: [m] — [i,j], Si = -+ = 8j) € (BAF"),,,, to (s [n] — [i,5], Si = -+ = S5)) €
(ZAE")},,)- Precomposing this retraction to the map (SAg"),, — O adjoint to
X, we get the desired special morphism.
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Next, we prove (2). Suppose we are given a special morphism « of ¥Seq (0)°
described as in (b). We wish to show that « is p-cocartesian. Using [Lurl7, Propo-
evp

sition B.4.9] to the functors O% xgin, BAR® — LAY — AP and the full subcat-
egory ) C LAR", we are reduced to showing that the functor

F: (3Ap7), — 0%

adjoint to « is p-left Kan extended from (SAg”),. Since the projection 7: (SAg®)  —
[1] is a cartesian fibration, this is equivalent to the condition that F' carries 7-
cartesian morphisms to inert maps. But m-cartesian morphisms lies over isomor-
phisms of Fin,, so the claim follows from the specialty of F'.

We next turn to (3). Consider the discrete set n = {1,...,n} and the poset n?
obtained from n by adjoining a minimal element —oo. We let n¥ — A°P denote the
functor carrying the map —oo — ¢ to the inert map [n] — [i — 1,4] = [1]. We can
identify the objects X7,..., X, with a functor F: (ZAp”) — 0%, and we must
find a filler as indicated below

ZAOPnL)o@)
F /n

e
\[ //// lp

(SA%P),« —— Fin,,

n

which determines special maps of ¥Seq (0)°. We will construct the filler as a p-
right Kan extension of F', and then show that this corresponds to n special maps
of ¥Seq (0)°.

Consider an object £ = ([n] — [i,4], 5 — - — 5;) € (EAE‘I’)[H]. We will as-
sume that ¢ < j, because the argument for the case where i = j is similar. The
inert maps {[¢,5] — [k — 1,k] N [4, jl}i<k<j+1 and the identity maps of the Si’s
determine an initial map

(i, j+1} = ((EA%")Q)U.

Therefore, to prove the existence of a p-right Kan extension, it will suffice to show
that there is a p-limit diagram {i,...,5 + 1}¥ — O® lying over the composite
{i,...,j+1}" = (XA), < — Fin.. This follows from the definition of co-operads.
Moreover, this argument shows that the p-right Kan extension F : n9x ao» SAZY —
0% determines special maps of ¥Seq (0)°.

The proof of part (4) is similar to that of part (3), using [Lurl?7, Proposition
B.4.9] again. The proof is now complete. (]

To facilitate the proof of Proposition 5.8, we will use marked simplicial sets,
which is a useful gadget to keep track of a designated class of morphisms (such as
inert maps).

Recollection 5.9. A marked simplicial set is a pair (S, M), where S is a simpli-
cial set and M is a set of edges of S containing all degenerate edges. If (X, E) and
(X', E’) are marked simplicial sets equipped with maps p: X — S and p’: X' — S
of simplicial sets, we write Fung ((X, F), (X', E’)) for the full simplicial subset of
Fung (X, X') = Fun (X, X') Xpun(x’,5) {P'} spanned by the maps X — X’ carrying
E into E'.

If O® is a symmetric or non-symmetric co-operad, we write O%8 for the marked
simplicial set obtained from O® by marking the inert edges. If X is a simplicial set,
we write X* for the marked simplicial set obtained from X by marking all edges.

Proof of Proposition 5.8. Write A%p"h for the marked simplicial set obtained from
A°P by marking the edges lying over inert maps of A°P. By Proposition 5.7, the
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marked simplicial set ¥.Seq (O)O’u € sSetj‘Aop,u is characterized by the isomorphism
of simplicial sets

_ _ :
Funpaop (K,ZSeqH (O)h) = Fungin, <K X (o)t (AOp’h)m X (134 A;p’h,(‘)@’h)

(Acra) (Acra)

natural in K € sSet;erp,n. In light of this, it suffices to show that the map

o 111 o
0: PO X pops AT PO (aces) X (om0 AP

(Aop,h){o}n

is a weak equivalence in the model category of co-preoperads [Lurl7, Proposition
2.1.4.6].
We can factor 6 as

PRf X Aopih Aﬁ;p’h LN (:p@,h) v Aﬁ;p’h

X(Aop,h){l

[1*

" . ) 7h
2y POt X(Aop,ﬂ){o}u (AOph) X(Aop,u){l}ﬁ A]cFm _

The map 6’ is a weak equivalence because it has a homotopy inverse, given by

#
the evaluation at 1 € [1]. The second map is a pullback of the map (iP®’h)m —

:
PRf X ( Aop.t) (0} (A°P) ] , which is a trivial fibration by [Lurl7, Proposition B.1.9].

Hence 6 is a weak equivalence, as claimed. Il

We now focus on the oo-operad YSeqy (€)° in the case where C® is a symmetric
monoidal co-category. We will show that it is a monoidal oo-category when C®
is compatible with colimits indexed by countable groupoids (Corollary 5.17), and
that it is compatible with the classical composition product (Proposition 5.18).

Construction 5.10. Every oc-operad O% can be freely made into a symmetric
monoidal co-category Env (O)®, called the symmetric monoidal envelop [Lurl?,
Construction 2.2.4.1, Proposition 2.2.4.9]. Concretely, Env((.‘))® is given by the
fiber product

Env(0)® —22 5 0®

| |

Fun®*([1], Fin,) —-— Fin,

with structure map Env (0)® — Fin, given by the evaluation at 1 € [1], where
Fun®®* ([1], Fin,) C Fun ([1], Fin,) denotes the full subcategory spanned by the ac-
tive maps. The diagonal Fin, — Fun®®* ([1], Fin,) determines a map of co-operads
n: O — Env(0)%, and for every symmetric monoidal co-category €%, pulling
back along 7 induces a categorical equivalence

Fun® (Env (0),€) = Alg, (©).

Note that the underlying oo-category Env (O) can be identified with the subcat-
egory 02, C 0% of active maps. We write @: 02, x 02, — 0%, for the tensor
bifunctor of Env (0).

Applying the above construction to O® = €%, we obtain an essentially unique
symmetric monoidal functor Env (€)® — €® that extends the identity of C® up to
equivalence. (One way to construct it is to choose a cocartesian natural transfor-
mation rendering the diagram

Env(€)® x {0} be —— €%

Env(@)® x [1] —— Fun®*([1], Fin,) x [1] —— Fin,
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commutative, and then restricting it along the inclusion {1} C [1].) We denote its
underlying functor by &: €2, — C.

act

Notation 5.11. We let AP, C A°P denote the subcategory of active morphisms.

For each n > 1, we will denote the unique active map [n] — [1] by wy,.

Notation 5.12. Let F C Ap” denote the subcategory spanned by the morphisms
(¢, {ui}t:) = ([n], S0 = -+ = Sn) = (Im], Ty — --- — T),) such that the maps u;
are all bijective. In other words, the map F — A°P is the cocartesian fibration
corresponding to the functor

A°P — Cat, [n] — (Fun ([n], Fin)°?)~.

We write § C  for the full subcategory spanned by the objects ([n], So — -+ — Sy)
such that S, =1 is a singleton.

Construction 5.13. Let €% be a symmetric monoidal co-category. Suppose we are
given a morphism f of ¥Seqy (€)° lying over the active map g, : [n] — [1], which
we can identify with a functor (EAE‘I’)M — C®. We define a natural transformation
ay of functors F,) — C as follows: Consider the composite

h o f
[1] % Fpyp = Fu, = (ZAF), = €7,

where h is a cocartesian natural transformation, and where g is induced by the
diagonal map A°P — Fun ([1], A°P). The above composite takes values in €., so
it can further be composed with the functor ®: €<, — € of Construction 5.10.
We define ay = @ofogoh.

Remark 5.14. In the situation of Construction 5.13, write f: X — Y and X =
X190 - -®X,, where X; € ¥Seqy (€). By Remark 5.6, we can identify X; and Y with
symmetric sequences X; and Y in €. The component of the natural transformation
oy at an object (So — --- — S,) € Jyy) is given by

Yl (SO%Sl)®®Yn (Sn,1 *)Sn) *)?(S()%Sn),

where Y (A — B) is a shorthand for @, 5 Y (As) and we used similar abbreviations
for 71' (Si—l — Sz)

Proposition 5.15. Let p: C® — Fin, be a symmetric monoidal oo-category, and
let q: ¥Seq (€)° — A°P be the associated non-symmetric co-operad.

(1) Let f be an active map of ¥Seq (C)° lying over u,: [n] — [1], which we
identify with a functor (EA;p)Mn — €. Suppose that the following condition
s satisfied:
(*g) The natural transformation ay: Gpn) x [1] — € exhibits |G as a left
Kan extension of af|Gpn) x {0} along the functor (pun), = Gy — G-
Then f is locally q-cocartesian.
(2) Let X € ZSeq(G)Fn]. If the composite

Ox: Sty — (SO, — €2, B e

admits a left Kan extension along (), 0x: Sy — Gpup, then there is a
locally g-cocartesian morphism X — (), X lying over p,.

The proof of Proposition 5.15 relies on the following lemma.
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Lemma 5.16. Let p: O® — Fin, be an co-operad. For each n > 1, the active map
[n] = [1] determines a homotopy cartesian square of co-categories

Fin aer ([1], ¥Seq(0)°) ————— BSeq(0)g,,

J !

Fun;:in* ((A]%p)una O®) — Fun;:in* ((A%p)[n]v O®)

Here Fung;, (—,—) denotes the full subcategory of Funis, (—,—) spanned by the
functors carrying each morphism in (Ag”),, and (Ag°); to inert maps of 0%,

Proof. Set X = (EAE‘P’)M and X' = (Aﬁ;p)un. We will identify X’ with the full
subcategory of X via the diagonal embedding A°? — X. For each i € [1], let M;
and M/ denote the set of morphisms of X and X’ lying over ¢ € [1]. Our goal is to
show that the square

Fungin, ((X, Mo U My), 0%8) —— Fungin, ((Xo, M), O2)

| |

Fungi,, (X7, MU M}), 0%8) —— Fungi,, (X5, M), 0%F)

is homotopy cartesian.

Notice that if X — Y is a map of X such that X € Xy and Y € X/, then X
necessarily lies in X{. It follows that Xo U X’ is a full subcategory of X. Moreover,
for each X € X lying outside of Xy U X', the category (Xo U X') xx Xx, is empty.
Since every functor F': X — O® carries objects outside of Xy U X’ to a p-terminal
object (as they lies over (0) € Fin,), this means that the functor

Fungis, (X, 0%) — Fungin, (Xo U X', 0%)

is an equivalence. In particular, the square

Fungin, ((X, Mo U M{), 0%%) —— Fungin, ((Xo, Mo), 0%%)

| |

Fungin, (X', Mg U M), 09%) —— Fungin, (X5, M{), 09F)

is homotopy cartesian. The claim now follows from the observation that every
functor X — O®f carries every morphism in M, \ M] to a p-cocartesian morphism
(because its codomain lies over (0) € Fin,.). O

Proof of Proposition 5.15. We start with (1). Consider the commutative diagram

Funaer ([1], XSeq(€)?) —————— Seq(C)[,,

!

Fun;:in* ((AE;P)#"7 e®) — Fun;:in* ((A]?Tp)[n] ) e®)

|

Funfin, (S, , €¥) ————— Funfin, (G, C%).

The top square is homotopy cartesian by Lemma 5.16. The right bottom vertical

arrows is an equivalence because functors in Fung, ((A;p) O®) are exactly

[n]”

those that are p-right Kan extended from §y,,). Similarly, the left bottom vertical
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arrow is an equivalence. It follows that the outer square is homotopy cartesian. In
particular, the map

Funaor ([1], ¥8eq (€)%) xsseq(eyg, {f12Sea (C)},}
%FunFin* (9#717 G®) XFunFin*(g[n],@®) {f|9[n]}

is a categorical equivalence. Therefore, it suffices to show that f|G,, is a p-left
Kan extension of f|G,). According to [Lur09b, Propositions 4.3.1.9, 4.3.1.10, and
4.3.1.15], this is equivalent to the condition that the composite

1Sun ®
Spp — €2, = C

be left Kan extended from Gp,,;. But this is true by (*g), and we are done.

For (2), note that the above argument shows that the image of X in Fungy,, (S[H], €®)
admits a p-left Kan extension. Since the outer rectangle of the diagram is homo-
topy cartesian, the p-left Kan extension gives rise to a morphism f: X — Y in
YSeq (€)° satisfying condition (xg). The map f is locally g-cocartesian by (1), and
this proves (2). O

Corollary 5.17. Let p: €° — Fin, be a symmetric monoidal co-category com-
patible with colimits indexed by countable groupoids. Then q: XSeq(€)° — A°P
is a monoidal co-category. Moreover, an active map f of ¥Seq(C)° lying over
tn: [n] = [1] is g-cocartesian if and only if it satisfies the following condition:
(*5) The natural transformation oy : I,y x [1] — € exhibits f|F7y) as a left Kan
extension of ap|Fp,) x {0} along the functor (pn), = Ty — T

Proof. We first show that an active map f: X — Y of ¥Seq(C)° lying over

tn: [n] = [1] is locally g-cocartesian if and only if it satisfies condition (x5). By

Proposition 5.15, it suffices to show that condition (xg) is equivalent to condition

(xg) there. Clearly (xg) implies (xg), so we only have to prove the converse.
Suppose that condition (xg) is satisfied. We must show that, for each S — T €

9'-[1], the map

(5.1)

colimg, .5, 57,5, Q) X (idpn), S0 = -+ — Sn) = (XK)oY (idpy), S — T)

is an equivalence. More formally, we must show that the top horizontal composite
in the diagram below is a colimit diagram:

(Fni/s—-r)” T (AR (G ¢

g o] ]

(TLier Fimyys—11)” — ier(Fmys—)”) — [eer(AF) . — [ler Co = [Tier €

The left hand rectangle commutes by [Ara25, Corollary 4.5], and the right hand
rectangle commutes because &): €&, — € is symmetric monoidal. In other words,

the map (5.1) can be identified with

Colimsoﬁ“‘ﬁsn’eg[n]/sﬁq, ® (® oX (id[n], SO,t — = Sn,t) i) ®OY (id[l], S — {ﬁ})) .

teT

Since €% is compatible with colimits indexed by countable groupoids, we are there-
fore reduced to showing to that each of the maps {(.’7"[711/5%{@)D — Clier is a
colimit diagram. This follows from (xg).

Next, we show that YSeq (€)° is a monoidal oo-category. According to [Hau22,
Lemma 2.1.25], the map ¢ is a locally cocartesian fibration, and we only have to
show that the composite of two locally g-cocartesian maps lying over active maps
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¢: [n] — [2] and po: [2] — [1] is again locally cocartesian. So take such maps
uw: X ->Y andv: Y — Z, and let w: X — Z denote a composite of v and u:

2]
X ——— 7 [n] ——— [1]

We must show that w is also locally g-cocartesian. Using (xg) and the transitivity
of Kan extensions, we are reduced to showing that the composite

5, 5¢2 &e

act

is left Kan extended from J7,). So take an arbitrary object (Tp — T1 — T2) € F[y.
We must show that the composite

(g[n]/Tg%TlﬁTQ) — .rf¢ — Gact §> e

is a colimit diagram. For this, find a diagram in ¥Seq (€)° lying over the diagram
on the right:

Xi+—Xr— X5 [0,p(1)] +— [n] —— [¢(1),n]
I T
Yi+—Y — Y, [0,1] 2] [1,2]

Here the arrows with tails “~—” are inert, and the remaining arrows are active. The

maps u1 and ug gives rise to maps F,,,, — e®, and Ftin—wy = €%, which fits
into the following diagram:
(Fnyymoomiom)” ED) Coe e ¢

(Fl0.61)1/To—Ts X Figp)yn)/Ti=1)" —> (Fo.01))/T0=72)” X (Floyml/mio1s)” — Fuoy X Faco(y — Cony % eﬁt@ée x €

As before, the diagram commutes up to equivalence. Now wu; and us are locally
g-cocartesian (see the argument of [Hau22, Lemma 2.1.25]), so by (*5), the maps
> >
(Froon/m-n)" = € (Froa)m/m-m) —C
are colimit diagrams. Therefore, the claim follows from the compatibility of C®

with colimits indexed by countable groupoids. The proof is now complete. [

Proposition 5.18. Let C be a symmetric monoidal category compatible with count-
able groupoids. There is an equivalence of monoidal co-categories

¥Seq (€)° = ¥Seqy (€)°

which is natural with respect to monoidal functors preserving colimits indexed by
countable groupoids.

Proof. We will construct a map ®: XSeq (€)° — XSeqy (€)° as follows: By con-
struction, ¥Seqy (€)° is isomorphic to the nerve of a category, so it suffices to
specify ® on objects and morphisms. An object of ¥Seq (€)° is a finite sequence
(X1,...,X,) of symmetric sequences in €. Its image ® (X1,...,X,,) € ¥Seqy (€)°
is given by the functor

(EAI?‘p)[n] - e®
(] = 13, ), Si = - = 83) = (Xp (Sp-1.5)) p s)ertr, ., o, 5,
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Next, given a morphism f: (X1,...,X,) — (Y1,...,Y,,) in ¥Seq (C)° lying over a
map f: [n] = [m] in A°P, the functor

o (f) (EAOp —e®

is defined as follows: The functor ® (f) extends ® (X1,...,X,,) and ® (Y1,...,Y:m).
If ([n] = 1[4,4],8 —---—S5;) = (Im] = [k,1,Tx — --- — T;) is a morphism of
(EA%")7 lying over the map 0 — 1 in [1], then its image (X, (Sp_l’s))(ns)eui@g s,
(Y, (Tq_l,t))(q,t)euk<q<1 7, 1s determined by the maps

® ® Xp PS %Y (S¢(q 1), t) =Y, (qul,t)a

#(g—1)<p<¢(q) SESp,¢

which in turn is determined by f. It is straightforward to check that ® is a cate-
gorical equivalence and has the stated naturality. The claim follows. O

We now arrive at the proof of Theorem 5.1.

Proof of Theorem 5.1. Proposition 5.18 gives us a natural equivalence
¥Seq (M)° = BSeqy (M)°.

Write ¥Seqy (M); C XSeqy (M)° for the essential image of ¥Seq (M).,;, which
is a monoidal co-category. Since every projectively cofibrant symmetric sequence is
injectively cofibrant (i.e., its values are cofibrant), we may consider the composite

natural transformation
Oni: BSeqy (M)o s — Seqy (Meot)” — ESeqy (Mso)® .

A priori, the map On; is merely lax monoidal, i.e., a map of non-symmetric oo-
operads. (In fact, ¥Seqy (Mcof)® is generally not a monoidal co-category.) How-
ever, by Lemma 3.12 and Proposition 5.15, it is in fact monoidal.

To complete the proof, it suffices to show that 6y is a monoidal localization
(Remark 2.3). By Remark 5.6, the underlying functor of fyp can be identified with
the composite

Fun (FB,M)_, - Fun (FB, Mior) 2> Fun (FB, M)

The map ¢ induces an equivalence upon localizing at weak equivalences, being
the restriction of the Quillen equivalence between projective and injective model
structures to the full subcategories of cofibrant objects. The map j is a localization
by [Cis19, Theorem 7.9.8]. Hence f\ is a monoidal localization, and we are done.

O
6. PROOF OF THE MAIN RESULT
We can finally give a proof of Theorem 1.17.
Proof of Theorem 1.17. By Theorem 2.5, it suffices to show that the functors
SSeqp (<)), SSeqy (=)o) ¢ TractSMMC — MonCato,
are naturally equivalent. This follows from Theorems 4.1 and 5.1. (|

APPENDIX A. RESULTS ON (00, 2)-CATEGORIES

In this section, we summarize basic definitions and terminology related to (oo, 2)-
categories that we will need in the paper.
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A.1. Definitions. We will use co-bicategories as our preferred model of (oo, 2)-
categories. In this subsection, we recall the definitions and constructions related to
this model.

Recollection A.1. [Lur09a, §3] A scaled simplicial set is a pair (X, Tx), where
X is a simplicial set and T'x is a set of 2-simplices of X containing all the degenerate
ones, whose elements are called thin triangles. There is a model structure on the
category sSet® of scaled simplicial sets, called the bicategorical model structure
[Lur09a, Theorem 4.2.7]. The bifibrant objects of this model structure are called
oo-bicategories. A morphism of scaled simplicial sets that are oo-bicategories are
called functors of co-bicategories.

Remark A.2. By [GHL22, Theorem 5.1], the fibrant objects of the bicategorical
model structure are nothing but weak oco-bicategories in the sense of [Lur09a, Def-
inition 4.1.1]. It follows immediately that:

(1) If € is an co-category, then (€, Cq) is an oo-bicategory.

(2) If Cis an co-bicategory, then the simplicial subset Und (C) of the underlying
simplicial set of C consisting of the simplices whose 2-simplices are all thin is
an oo-category. We refer to Und (C) as the underlying oo-category of C,
and call the objects and morphisms of Und (€) as objects and morphisms
of €. A morphism of € is called an equivalence if it is an equivalence in
Und (@).

(3) If (X, Tx) is an oo-bicategory, then so is (X, Tx)” = (X, Tx) |[GHL22,
Corollary 5.5].

Remark A.3. [GHL22, Remark 1.31] The co-bicategorical model structure is carte-
sian. In other words, if A — B is a cofibration and X — Y is a fibration of the
bicategorical model structure, then the induced map

Fun™ (B, X) — Fun™ (A, X') Xpupse(a,y) Fun® (B,Y)
is again a fibration. Here Fun® (—, —) denotes the internal hom of sSet™.

Example A.4. Let C be an oco-bicategory. For each object X € C, we define a
scaled simplicial set X/ by the fiber product

€Y/ = Fun®™ ([1], €) Xpunse(f0},¢) {X }-
This is an oo-bicategory by Remark A.3.

Remark A.5. For an oo-category € and an object X € G, there is another oo-
category Cx, equivalent to @X/. The former usually goes under the name “slice,”
while the latter goes by the “fat slice” [Lan2l, Definition 2.5.21]. As they are
equivalent, there is no essential need to distinguish between them, but we will
adhere to this notational convention.

Remark A.6. A functor p: € — D of oco-bicategories is a bicategorical fibration
(i.e., fibration in the bicategorical model structure) if and only if it has the right
lifting property for the following class of maps:

(1) The class of scaled anodyne extensions [Lur09a, Definition 3.1.3]. Recall
that this is generated by the following maps:
(a) For 0 < ¢ < n, the inclusion

(A7, (A7), NT) = (A", T),

where T' denotes the set of degenerate 2-simplices of A™ and the sim-
plex Ali=2,0,0+1}



32 KENSUKE ARAKAWA

(b) The map (A*,T) — (A%, TUA34 yAL0L4) | where T is the

union of the degenerate 2-simplices and the simplices A{0:2:4}  A{1,2:3}
A{0,1,3F A{1,3.4} A{0,1,2} 3
Y ) N

(¢) For n > 2, the inclusion
(Af a0y A% T) = (A" a0y A, T,

where T is the set of degenerate 2-simplices of A™ I (0.1} A° and the
image of the 2-simplex A{0:1.n},
(2) The inclusion ({e},{e}) — (J, J2) for € € {0,1}.
This follows from Remark A.3 and the characterization of the bicategorical model
structure given in [GHL22, Corollary 6.4.].
We remark that condition (1) is automatic if D is the scaled nerve of an ordinary
category. This is because such a scaled simplicial set has a unique filler for inner
horns, and at most one filler for outer horns in dimensions higher than 2.

We will often identify co-bicategories with their underlying simplicial sets. This
is justified by the following proposition:

Proposition A.7. Let X = (X,Tx) be a scaled simplicial set. If X is an co-
bicategory, then the set T'x of thin triangles is completely determined by the under-
lying simplicial set X .

Proof. Consider the set T% of 2-simplices o € X5 with the following property:

(¥) Let n € {3,4}, and let ¢: A" — X be a map of simplicial sets. Suppose
that ¢|A{r=2n=Ln} factors through A' via the map carrying n — 2 to 0
and n — 1 and n to 1. Then ¢ extends to a map A™ — X.
We will show that T% = Tx. Since T% depends only on X, this will prove the
claim.
By Remark A.2 and the definition of weak oco-bicategories, we have Tx C T%.
To prove the reverse inclusion, suppose we are given a 2-simplex o € T% depicted
as

We must show that o is thin. For this, we use the fact that X is an co-bicategory
to find a thin 2-simplex 7 depicted as

r— Z.
gf

We then use condition () for n = 3 (applied to A1%1:2:3} and A10:1:34}) to construct
a map
b AY = AL0123} y AT0L.24} | AT0L34} § AfL234) , ¥
whose restrictions to the 2-dimensional faces are given by
YIATOL2Y = 5 | ATOL3E = | ATL28Y — 1
1,3 1,4 34)
1/)|A{013} =7, 1/}|A{01 ]»7(77 1/)|A{134} 7197

3The original reference by Lurie says T'UA{0:3:4} y A{1:3:4} ipstead of TUA{0:3:4} g A{0.14}
but this is a typo, as corrected in [GHL22, Definition 1.17].
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and such that | A{%124} is a degeneration of o and |A{1234} is a degeneration

//\
NN

Using (%), we can extend ¢ to a map : A* — X. Since (X°P,Ty) is an oo-
bicategory and the restriction of ¢ to A{0:24H A{L2:3} A{L.3.4} A{0.1,3} A{23,4}
are thin ()| A{%13} = 7 is thin, and the rest are all degenerate), the definition of
oo-bicategory shows that E|A{O’1’4} = o is thin, as required. (]

Remark A.8. In [Lur25, 01W9], Lurie introduces defines an (0o, 2)-category to be
a simplicial set satisfying some conditions. The underlying simplicial set of an oco-
bicategory is an (oo, 2)-bicategory in this sense. The converse is expected to be
true, but a proof seems to be missing in the literature [hs].

Many oco-bicategories in this paper arise from the following “nerve” constructions:

Example A.9. Let € be a bicategory. The Duskin nerve [Lur25, 009U] of €
is an oo-bicategory. The Duskin nerve determines a fully faithful functor from
the category of bicategories and strictly unitary lax functors into the category of
simplicial sets [Lur25, 00AU]. Because of this, we often identify bicategories with
their Duskin nerve.

Recollection A.10. [Lur09a, Theorem 4.2.7] Let sSet™ denote the category of
marked simplicial sets (i.e., pairs (X, Ex ), where X is a simplicial set and Ex is a
set of edges of X containing all the degenerate ones. The category sSet™ admits a
model structure whose bifibrant objects are the oo-categories (quasicategories) with
equivalences marked. The category Catge+ of sSet™-enriched categories admits an
induced model structure, and there is a Quillen equivalence

—
€5 sSet™ | Catggep+: N°°
-
The right adjoint of this adjunction is called the scaled nerve functor.

Definition A.11. We define the oo-bicategory Gatg,%) of oo-categories to be the
scaled nerve of the sSet™-enriched category of oo-categories, with mapping ob-
jects given by (Fun (€, D), {equivalences}). Likewise, we define the oco-bicategory
Bi@at((,%) of oo-categories as the scaled nerve of the sSet™-enriched category of co-
bicategories, with mapping objects given by (Und (Fun® (€, D)), {equivalences}).
Their underlying oco-categories are denoted by Cat,, and BiCat

A.2. Mapping oco-categories. To each oco-bicategory € and each pair of objects
X,Y € @, we can associate an oo-category C(X,Y), called the mapping oo-
category. In this subsection, we define them and give a formula of the mapping
oo-categories of the arrow oo-bicategory of co-bicategories.

Definition A.12. Let € be an oo-bicategory. The mapping category functor
C(—,—):CPxC— Cat?) is defined as the composite

COP x @ — N5 (€)% x N (€,) & N* (€ x €4) ~-=7; cat®



34 KENSUKE ARAKAWA

where the functor €, is a fibrant sSet™*-enriched category equipped with an equiv-
alence € — N*¢(C4) of oo-bicategories, and €1 (—, —) denotes the hom-functor of
C+ (with markings dropped).

If f: € = D is a functor of co-bicategories, then we define a natural transfor-
mation a: C(—,—) — D (f—, f—) as follows: Choose C4 and Dy so that there is
a sSet™-enriched functor fi: €, — D, rendering the diagram

e — N%<(€4)

I

D —— N*(Dy,)
commutative. Then « is induced by f.

Definition A.13. Let f: € — D be a functor of co-bicategories. We say that f is:
e fully faithful if for each pair of objects X,Y € C, the map

C(X,Y)—>D(fX, fY)

is an equivalence of co-categories.
e essentially surjective if it is essentially surjective on the level of under-
lying co-categories.

Remark A.14. [Lur09a, Remark 4.2.1] Let € be an oo-bicategory and let €’ C € be
a full sub oco-bicategory (i.e., a full simplicial subset). Then the inclusion ¢’ < €
is fully faithful.

Remark A.15. [Lur09a, (Argument of) Lemma 4.2.4] A functor of co-bicategories
is a weak equivalence in sSet™ if and only if it fully faithful and essentially sur-
jective. We call such a map a bicategorical equivalence or an equivalence of
oo-bicategories.

In the main body of the paper, we will often need to identify the mapping spaces
of arrow oo-bicategories. The following proposition will be useful for this. We
refer the readers to [AGS23, Theorem 4.1] and [BB24, Example A.2.6] for different
flavors of similar results.

Proposition A.16.

(1) Let C be an oco-bicategory, and let f: Xg — X1 and g: Yo — Y1 be mor-
phisms in C. The mapping category of Ar (C) = Fun®® ([1], C) fits into the
pullback square

Ar(€)(f,9) = C(X1, Y1)

evoi Ja*

C(Xo, Yo) 5 C(Xo, Y1)

which is natural in f,g € Ar (C).
(2) Let C be a fibrant sSet™ -enriched category. Call a morphism f: Xo — X3
a quasi-fibration if for each object C € C, the map

fo: C(C, Xq) = C(C, X1)

is a fibration in sSet™. The full subcategory C([llf]ib c ClY spanned by quasi-
fibrations is a fibrant sSet™ -enriched category, and the functor

o: N (Clih, ) = Fan™ (1], N (©))
18 fully faithful.



EQUIVALENCE OF TWO APPROACHES TO ENRICHED oco-OPERADS 35

Proof. For (1), we may assume that € = N (C) for some fibrant sSet™-category C.
Let A = (sSet‘F)C ’ denote the sSetT-enriched category of sSet™-enriched functors
C? — sSet™, equipped with the projective model structure. By the enriched
Yoneda embedding, the functor C — A is fully faithful (i.e., induces isomorphisms
between hom objects). Moreover, since C is fibrant, it takes values in the full
subcategory A° C A of bifibrant objects. Therefore, it will suffice to prove the
assertion for N°¢ (A°). In this case, [AS23, Proposition 3.89] gives an equivalence

Vo< (A1) = Fun® ([1], N* (A%)) .

The mapping space of (Ao)m from f: Ay — A; to g: By — B is given by the
pullback

AU(f,g) —— A(A1,By)

evol lf“

A(Ao, Bo) T} A(AQ, Bl)7

which is a homotopy pullback because f* is a fibration. The claim readily follows.

The proof of (2) is similar to that of (1) but is more elaborate. The fibrancy
of Cgléb is clear from the definition of quasi-fibrations. To show that ¢ is fully
faithful, let A = Fun™ (COp,sSet+) be as above, and identify C with a full sub

sSet"-category via the enriched Yoneda embedding. We will also write A° C A for
the full sSet™-category spanned by the fibrant-cofibrant objects.

Let us say that an object A € A° is good if for each quasi-fibration Xy — X3
in C, the induced map A (4, Xy) — A (A, X;) is a fibration. We consider the
following categories:

e The full sub sSet*-category Agood C A° spanned by the good objects.
e The full sub sSet*-category (Agood)glgb C (Agood)m spanned by the quasi-
fibrations in Aggod-

Since every object in C is good, and since every quasi-fibration in C is a quasi-
fibration in Agood, We have the following commutative diagram:

Nee(clly —2— Fun*([1], N*(C))

i J

N ((Agooa) ) —2 Fun*®([1], N*(A°))

Our goal is to show that ¢ is fully faithful. Since the vertical arrows are fully
faithful, it will suffice to show that 1 is fully faithful.

Let f: Ag — Ay and g: By — B be arbitrary objects in (Agood)gﬂb. We wish
to show that the map

N (Agooa) i, ) (f:9) = Fun ([1], N*° (A)) (£.9)

is an equivalence. For this, find cofibrant replacements a: f/ = f and 8: ¢/ — ¢
in A, where A" is equipped with the projective model structure. (This means f’
and ¢’ are cofibrations of cofibrant objects.) Consider the following sSet™-category
X:

e The collection of objects of X is ob (Agood)([llf]ib I{f11u{q}.
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e Mapping categories are given by

X (a,0) = {° if @ € ob (Agood) iy, and b € {f'} 11 {g'},
7 Al (a,b) otherwise.

The maps

X (f,9) = X(f',9) « X(f,9)
are equivalences in sSet™. Also, the images of a and 3 in Fun® ([1], N*¢ (A°)) are
equivalences, too. Therefore, it suffices to show that the map

N*(X) (f,9') = Fun™ ([1], N> (X°)) (f". ")
is an equivalence. The full sub sSet*-category of X spanned by f’ and ¢’ maps
fully faithfully into (Ao)m, so we are reduced to showing that the map

N (A9 (f,9') = Fun® ([1], N* (A)) (f',9')
is an equivalence. This follows from [AS23, Proposition 3.89]. O

A.3. Cartesian fibrations. The straightening—unstraightening equivalence is a
fundamental construction in oo-category theory. Briefly, it gives an alternative
presentation of Cats.-valued functors in terms of (co)cartesian fibrations, which are
often easier to handle than Cat..-valued functors themselves. In this subsection,
we revisit this equivalence in the co-bicategorical setting.

Definition A.17. Let p: € — B be a functor of oco-bicategories. A morphism
f: X =Y of € is said to be p-cartesian if for each object E € &, the square

eE,X) —I s eBY)

| |

Bp(E),p(X)) —+ Bp(E),p(Y)

is cartesian in Caty,. Dually, we say that f is p-cocartesian if it is p°P-cocartesian.
Assume now that B is an co-category. We say that p is a cartesian fibration
if it satisfies the following pair of conditions:
(1) pis a fibration in the bicategorical model structure; and
(2) For each object X € & and each morphism f: p(X) — B in B, there is a
p-cartesian morphism X — Y lying over f.

Cocartesian fibrations are defined dually.

Remark A.18. In order to maximize efficiency, our treatment of cartesian fibrations
of co-bicategories is deliberately incomplete. For example, we can define cartesian
fibrations over an arbitrary oo-bicategory, but we have decided not to include the
definitions because there are four flavors (inner and outer (co)cartesian fibrations)
instead of two.

Remark A.19. In the setting of scaled simplicial sets, Definition A.17 is not a
standard definition of variations of cartesian fibrations. Proving the equivalence
between our definition and a more established definition is somewhat technical and
is deferred to Subsection A.4.

Example A.20. Let € be an oco-bicategory, and let
Xog — X(/)

fl lf ’

X14>X{
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be a diagram in Und (€). Suppose that the square is cocartesian in € (i.e., for
each C' € C, the functor C(—,C) carries the square into a pullback square of co-
categories). Then the morphism f — f’ in Ar (€) = Fun™ ([1], €) is cocartesian for
the projection Ar (€) — Fun” ({0}, €) = €. This follows from Proposition A.16.

Just like cartesian fibrations of co-categories, there is a straightening—unstraightening
equivalence for co-bicategorical cartesian fibrations. To state this, we introduce the
following notation:

Notation A.21. Let B be an co-category. We let Cart(B) denote the following
category:

e Objects are cartesian fibrations € — B of oco-bicategories.
e Morphisms are commutative diagrams

e — I L

N,

of scaled simplicial sets, where f preserves cartesian edges.

We let Cart (B) denote the oco-categorical localization of Cart (B) at the maps whose
underlying maps are bicategorical equivalences.

We then have the following oo-bicategorical straightening—unstraightening equiv-
alence:

Theorem A.22. [AS23, Theorem 3.85] For every oco-category B, there is an equiv-
alence of co-categories

Fun (B°P, BiCats,) ~ Cart (B).

Remark A.23. Asin [?, Appendix A], the equivalence of Theorem A.22 is natural
in B € Caty

Remark A.24. [AS23, Theorem 4.21] The equivalence of Theorem A.22 is a re-
finement of the classical 2-categorical Grothendieck construction. More precisely,
let 2Cat denote the category of 2-categories (i.e., Cat-enriched categories) and 2-
functors. Given a category B and a functor F: B°? — 2Cat, we can form its
Grothendieck construction 7: [ F — B. Explicitly:

e Objects of [ F are pairs (B, X).

e The mapping categories are given by

([F) @z = I1 B s X)X,
f€B(Bo,B1)

The Duskin nerve of 7 is a cartesian fibration, and it corresponds to the composite

NP .
B°P — 2Cat — BiCaty,

Variant A.25. Let B be a category and F': B°? — BiCat be a functor, where BiCat
denotes the category of bicategories and pseudofunctors between them. We can
form the Grothendieck construction f F as in Remark A.24, which is a bicategory.
The Duskin nerve of the projection 7: [ F — B is a cartesian fibration, and it
corresponds to the composite

. NP .
B°P — BiCat — BiCat
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To see this, note that the strictification functor st: BiCat — 2Cat of [GPS95, § 4.10]
gives an equivalence of bicategories

/Fi/stoF.

The claim then follows from this equivalence and Remark A.24 Remark A.6.

A.4. More on cartesian fibrations. In this subsection, we will prove that carte-
sian fibrations in the sense of Definition A.17 are nothing but O2C-fibrations (or
outer 2-cartesian fibrations) in the sense of [AGS22, Definition 4.22] (Corollary
A.38).

Convention A.26. For disambiguation, we make the following convention through-
out this subsection: We will refer to cartesian morphisms and cartesian fibrations
in the sense of Definition A.17 as fake cartesian morphisms and fake cartesian
fibrations.

With this convention, the main result of this subsection can be stated as follows:

Proposition A.27. Let p: € — B be a map of co-bicategories, where B is an oco-
category. Then p is a fake cartesian fibration if and only if it is an O2C-fibration.

The rest of this subsection is devoted to the proof of Proposition A.27.
We start by recalling the definition of O2C-fibrations.

Definition A.28. [AGS22, Definitions 2.3 and 4.7] Let X be a scaled simplicial
set, and let o be a 2-simplex of X, depicted as

N

X ——m 7

e We say that o is left degenerate if 0|A{0*1} is degenerate.
e A left degeneration of ¢ is a 2-simplex 7 which admits a 3-simplex
p: A% — X depicted as

where « is thin.

Definition A.29. [AGS22, Definition 2.14] A map of scaled simplicial sets is called
a weak S-fibration if it has the right lifting property for the scaled anodyne maps.

Definition A.30. [AGS22, Definitions 4.14] Let p: € — B be a weak S-fibration,
where B is an co-bicategory. We say that an edge e: Al — & is p-cartesian (resp.
strongly p-cartesian) if it satisfies the following conditions:

e Let n > 2, and consider a lifting problem

e

A{nflfn}/—x

— A} —5 €&

A
L)

A" —— B
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Suppose further that f|A{%"=17} is thin (resp. p-cocartesian) when n > 3.
Then there is a dashed filler f such that f|A{%"=17} ig thin (resp. p-
cocartesian).

Remark A.31. Let p: € — B be a bicateogrical fibration of co-bicategories. Then a
morphism of € is p-cartesian if and only if it is fake p-cartesian. This follows from
[GHL24, Lemma 2.4.2 and Proposition 4.2.7].

Definition A.32. Let C be an oo-bicategory, and let X, Y € € be objects of
C. We let Homlé2 (X,Y) denote the simplicial set whose n-simplices are the maps
¢: A" x A’ — € such that ¢|A™ and ¢|A° are the constant maps at X and Y.
(This is the underlying simplicial set of Homg (X,Y) defined in [GHL22, § 2.3].)

Remark A.33. [GHL22, Corollary 2.26] Let p: € — D be a weak S-fibration of
oo-bicategories. For every pair of objects X,Y € €, the induced map

Hom?% (X,Y) — Hom?% (p (X),p (Y))

is an inner fibration of co-categories. In particular, Hom§ (X,Y) is an oo-category.
Moreover, its equivalences are precisely the thin triangles.

Definition A.34. [AGS22, Definition 4.1, Proposition 4.4] Let p: € — B be a weak
S-fibration, where B is an oco-bicategory. We say that a left degenerate 2-simplex
o of X is p-cocartesian if it is cocartesian for the map

Hom{ (X, Y) — Hom (p (X) ,p (V).

A 2-simplex of X is said to be p-cocartesian if its left degenerations are p-
cocartesian. We denote the collection of cocartesian triangles by Cx.

Definition A.35. [AGS22, Definitions 4.24] Let p: € — B be a weak S-fibration,
where B is an oo-bicategory. We say that p is an outer 2-cartesian fibration, or
an O2C-fibration, if it satisfies the following conditions:

(O2C-1) The map p is locally fibered in the following sense: For each pair of
objects X, Y € &, the functor

Hom{ (X,Y) — Hom§ (p (X),p(Y))

is a cocartesian fibration of co-categories.

(02C-2) The map p is functorially fibered in the following sense: Let 0 < i <
3, and let p: A®> — & be a simplex such that p|AU=144+1} i thin, If
p|A3 carries all triangles to p-cocartesian triangles, then p|A[3]\{i} is p-
cocartesian. (Somewhat informally, this says cocartesian 2-cells are stable
under pasting.)

(02C-3) Every degenerate edge of € is strongly p-cartesian.

(O2C-4) The map p has enough cartesian morphisms in the following sense:
Every morphism admits a p-cartesian lift with a given target.

Having recalled the definition of O2C-fibrations, we get down to the proof of
Proposition A.27. We need a few preliminary results.

Lemma A.36. Let p: C — D be a weak S-fibration of co-bicategories. The follow-
ing conditions are equivalent.

(1) The map p is a bicategorical fibration.
(2) The map p induces a categorical fibration of underlying co-categories. Equiv-
alently (by [Lur09b, Corollary 2.4.6.5] and [Lur09a, Remark 3.1.5]), for ev-

ery object C € € and every morphism f: p(C) = D' in D, there is an
equivalence f: C = C' of C lying over f.
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Proof. The implication (2) = (1) follows from Remark A.6, because the inclusion
{e} C J is a trivial cofibration in the Joyal model structure for ¢ € {0, 1}.

For the converse, suppose condition (1) is satisfied. We must show that condition
(2) is satisfied. By Remark A.6, it will suffice to prove the following: If f: Al — D
is an equivalence in an oco-category, then f extends to a map J — D. To see this,
we note that our assumption ensures that f factors through the maximal sub Kan
complex D=. So we may assume that D is a Kan complex. In this case, the claim
is trivial because Al < J is an anodyne extension of simplicial sets (as it is a
monomorphism and both A! and J are weakly contractible). Hence (1) = (2), as
claimed. (|

Proposition A.37. Let B be an oco-bicategory, and let p: € — B be a weak S-
fibration. If p is an O2C-fibration, then it is a bicategorical fibration.

Proof. By Lemma A.36, it will suffice to show that Und (p) is a categorical fibration.
This is clear, because Und (p) is a cartesian fibration of oo-categories. (]

Proposition A.38. Let B be an co-category (with all triangles scaled). A weak
S-fibration p: € — B is an O2C-fibration if and only if it satisfies the following
pair of conditions:

(1) The map p is a bicategorical fibration.
(2) Every morphism of S admits a p-cartesian lift with a given target.

Moreover, a triangle of € is p-cocartesian if and only if it is thin.

Proof. The last assertion is immediate from the definitions and the “three out of
four” property of thin triangles [Lur09a, Remark 3.1.4]. The “only if” part of the
proposition follows from Proposition A.37. For the “if” part, suppose that p satisfies
conditions (1) and (2). We must show that p satisfies conditions (O2C-1) through
(02C-4) of Definition A.35:

(0O2C-1) For each pair of objects X, Y € &, the functor
pxy: Hom{ (X,Y) = Homg (p (X),p(Y))

is a cocartesian fibration of co-categories. We know that px y is an inner
fibration (Remark A.33). Moreover, Hom% (p(X),p(Y)) is a Kan complex
because B is an co-category. Thus, our task is to show that every morphism
of Hom# (p (X),p (Y)) lifts to an equivalence of Hom§ (X,Y) with a given
source. This follows from the definition of weak S-fibrations.

(02C-2) The map p is functorially fibered. This follows from the characterization of
p-cocartesian triangles as thin triangles and the “three out of four” property
of thin triangles.

(02C-3) Every degenerate edge of & is strongly p-cartesian. Note that there is no
distinction between strongly p-cartesian edges and p-cartesian edges, be-
cause p-cocartesian triangles are thin. Hence, it suffices to show that every
degenerate edge of € is p-cartesian. This is immediate from Remark A.31.

(02C-4) The map p has enough cartesian morphisms. This is part of the assumption.

Thus we have shown that p satisfies conditions (02C-1) through (02C-4) of
Definition A.35, as required. (I

We finally arrive at the proof of Proposition A.27.

Proof of Proposition A.27. This follows from Remark A.31 and Proposition A.38.
O
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A.5. Endomorphism oo-category. A monoidal category can be regarded as a
bicategory with a single object. This perspective gives us a fully faithful left adjoint

B: MonCat — BiCatg},

with right adjoint given by (€, X) — (€ (X, X),0). In this subsection, we record
an oo-categorical version of this observation.

Proposition A.39. There is an adjunction of oco-categories

-
MonCates L (BiCatoo) (g,
—

whose left adjoint is fully faithful. The essential image consists of essentially sur-
jective functors [0] — € of co-bicategories.

Proof. Let Alg (sSetJr) denote the category of monoid objects in sSet™. By [Lurl?7,
Proposition 4.1.8.3], Alg (sSet+) has a model structure whose weak equivalences
and fibrations are detected by the forgetful functor Alg (sSet+) — sSet™. The in-
clusion Alg (sSetJr) — (Catsset+)[0] , admits a right adjoint, which carries a pointed

sSet " -enriched category (€, X) to the mononid object € (X, X) € Alg (sSet+). The
resulting adjunction

+ —
Alg (sSet )i (Catgser+ ) (o)

is a Quillen adjunction. Moreover, the underlying oco-categories of Alg (sSetJr)
and (Catgser+) g, can be identified with MonCats, and (BiCats)y, by [Lurl?,
Theorem 4.1.8.4] and [Cis19, Corollary 7.6.13], respectively. We thus get an induced
adjunction

—
MonCats L (BiCatss) gy, -
Pl

By inspection, the unit of this adjunction is an equivalence, so the left adjoint is
fully faithful. The claim follows. (I

Remark A.40. A version of the Proposition A.39 appears in [GH15, Theorem 6.3.2].

Definition A.41. Let C be an co-bicategory, and let X € C be its object. We write
&nde (X)° for the image of (C, X) € (BiCatos ) ), under the functor (BiCates )y, —
MonCat,, and call it the endomorphism monoidal co-category of C at X.
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